BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 20505085)

  • 1. Inferior frontal gyrus activation predicts individual differences in perceptual learning of cochlear-implant simulations.
    Eisner F; McGettigan C; Faulkner A; Rosen S; Scott SK
    J Neurosci; 2010 May; 30(21):7179-86. PubMed ID: 20505085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frontotemporal activation differs between perception of simulated cochlear implant speech and speech in background noise: An image-based fNIRS study.
    Defenderfer J; Forbes S; Wijeakumar S; Hedrick M; Plyler P; Buss AT
    Neuroimage; 2021 Oct; 240():118385. PubMed ID: 34256138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between unsupervised learning and the degree of spectral mismatch on short-term perceptual adaptation to spectrally shifted speech.
    Li T; Galvin JJ; Fu QJ
    Ear Hear; 2009 Apr; 30(2):238-49. PubMed ID: 19194293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic richness modulates the neural networks supporting intelligible speech processing.
    Lee YS; Min NE; Wingfield A; Grossman M; Peelle JE
    Hear Res; 2016 Mar; 333():108-117. PubMed ID: 26723103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential responses to spectrally degraded speech within human auditory cortex: An intracranial electrophysiology study.
    Nourski KV; Steinschneider M; Rhone AE; Kovach CK; Kawasaki H; Howard MA
    Hear Res; 2019 Jan; 371():53-65. PubMed ID: 30500619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of individual differences in predicting ambiguous sounds comprehension level.
    Lin Y; Tsao Y; Hsieh PJ
    Neuroimage; 2022 May; 251():119012. PubMed ID: 35183745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facilitation of inferior frontal cortex by transcranial direct current stimulation induces perceptual learning of severely degraded speech.
    Sehm B; Schnitzler T; Obleser J; Groba A; Ragert P; Villringer A; Obrig H
    J Neurosci; 2013 Oct; 33(40):15868-78. PubMed ID: 24089493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral and fMRI evidence that cognitive ability modulates the effect of semantic context on speech intelligibility.
    Zekveld AA; Rudner M; Johnsrude IS; Heslenfeld DJ; Rönnberg J
    Brain Lang; 2012 Aug; 122(2):103-13. PubMed ID: 22728131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term changes in cortical representation through perceptual learning of spectrally degraded speech.
    Murai SA; Riquimaroux H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Jan; 209(1):163-172. PubMed ID: 36464716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer of auditory perceptual learning with spectrally reduced speech to speech and nonspeech tasks: implications for cochlear implants.
    Loebach JL; Pisoni DB; Svirsky MA
    Ear Hear; 2009 Dec; 30(6):662-74. PubMed ID: 19773659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Objective phonological and subjective perceptual characteristics of syllables modulate spatiotemporal patterns of superior temporal gyrus activity.
    Frye RE; Fisher JM; Witzel T; Ahlfors SP; Swank P; Liederman J; Halgren E
    Neuroimage; 2008 May; 40(4):1888-901. PubMed ID: 18356082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speech comprehension aided by multiple modalities: behavioural and neural interactions.
    McGettigan C; Faulkner A; Altarelli I; Obleser J; Baverstock H; Scott SK
    Neuropsychologia; 2012 Apr; 50(5):762-76. PubMed ID: 22266262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory skills and brain morphology predict individual differences in adaptation to degraded speech.
    Erb J; Henry MJ; Eisner F; Obleser J
    Neuropsychologia; 2012 Jul; 50(9):2154-64. PubMed ID: 22609577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of non-speech sound memory in postlingual deafness: implications for cochlear implant rehabilitation.
    Lazard DS; Giraud AL; Truy E; Lee HJ
    Neuropsychologia; 2011 Jul; 49(9):2475-82. PubMed ID: 21557954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frontal cortex functional connectivity changes during sound categorization.
    Husain FT; McKinney CM; Horwitz B
    Neuroreport; 2006 Apr; 17(6):617-21. PubMed ID: 16603922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sublexical properties of spoken words modulate activity in Broca's area but not superior temporal cortex: implications for models of speech recognition.
    Vaden KI; Piquado T; Hickok G
    J Cogn Neurosci; 2011 Oct; 23(10):2665-74. PubMed ID: 21261450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of adaptation in freely-moving normal hearing subjects under cochlear implant acoustic simulations.
    Smalt CJ; Gonzalez-Castillo J; Talavage TM; Pisoni DB; Svirsky MA
    Neuroimage; 2013 Nov; 82():500-9. PubMed ID: 23751864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reading fluent speech from talking faces: typical brain networks and individual differences.
    Hall DA; Fussell C; Summerfield AQ
    J Cogn Neurosci; 2005 Jun; 17(6):939-53. PubMed ID: 15969911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural characteristics of successful and less successful speech and word learning in adults.
    Wong PC; Perrachione TK; Parrish TB
    Hum Brain Mapp; 2007 Oct; 28(10):995-1006. PubMed ID: 17133399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The involvement of occipital and inferior frontal cortex in the phonological learning of Chinese characters.
    Deng Y; Chou TL; Ding GS; Peng DL; Booth JR
    J Cogn Neurosci; 2011 Aug; 23(8):1998-2012. PubMed ID: 20807053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.