BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 20505121)

  • 21. In Vivo Identification of Photosystem II Light Harvesting Complexes Interacting with PHOTOSYSTEM II SUBUNIT S.
    Gerotto C; Franchin C; Arrigoni G; Morosinotto T
    Plant Physiol; 2015 Aug; 168(4):1747-61. PubMed ID: 26069151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interplay between LHCSR proteins and state transitions governs the NPQ response in Chlamydomonas during light fluctuations.
    Steen CJ; Burlacot A; Short AH; Niyogi KK; Fleming GR
    Plant Cell Environ; 2022 Aug; 45(8):2428-2445. PubMed ID: 35678230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photosystem II monomeric antenna CP26 plays a key role in nonphotochemical quenching in Chlamydomonas.
    Cazzaniga S; Kim M; Pivato M; Perozeni F; Sardar S; D'Andrea C; Jin E; Ballottari M
    Plant Physiol; 2023 Sep; 193(2):1365-1380. PubMed ID: 37403662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thylakoid Protein Phosphorylation Dynamics in a Moss Mutant Lacking SERINE/THREONINE PROTEIN KINASE STN8.
    Gerotto C; Trotta A; Bajwa AA; Mancini I; Morosinotto T; Aro EM
    Plant Physiol; 2019 Jul; 180(3):1582-1597. PubMed ID: 31061101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-Harvesting Complex Stress-Related Proteins Catalyze Excess Energy Dissipation in Both Photosystems of Physcomitrella patens.
    Pinnola A; Cazzaniga S; Alboresi A; Nevo R; Levin-Zaidman S; Reich Z; Bassi R
    Plant Cell; 2015 Nov; 27(11):3213-27. PubMed ID: 26508763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of non-photochemical quenching in the Bryophyte Physcomitrella patens during acclimation to salt and osmotic stress.
    Azzabi G; Pinnola A; Betterle N; Bassi R; Alboresi A
    Plant Cell Physiol; 2012 Oct; 53(10):1815-25. PubMed ID: 22952250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of LHCSR and PsbS enhance light tolerance in Chlamydomonas reinhardtii.
    Wilson S; Kim E; Ishii A; Ruban AV; Minagawa J
    J Photochem Photobiol B; 2023 Jul; 244():112718. PubMed ID: 37156084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular genetics of xanthophyll-dependent photoprotection in green algae and plants.
    Baroli I; Niyogi KK
    Philos Trans R Soc Lond B Biol Sci; 2000 Oct; 355(1402):1385-94. PubMed ID: 11127993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. UV-A/B radiation rapidly activates photoprotective mechanisms in Chlamydomonas reinhardtii.
    Tokutsu R; Fujimura-Kamada K; Yamasaki T; Okajima K; Minagawa J
    Plant Physiol; 2021 Apr; 185(4):1894-1902. PubMed ID: 33793957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acclimation- and mutation-induced enhancement of PsbS levels affects the kinetics of non-photochemical quenching in Arabidopsis thaliana.
    Zia A; Johnson MP; Ruban AV
    Planta; 2011 Jun; 233(6):1253-64. PubMed ID: 21340700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Higher order photoprotection mutants reveal the importance of ΔpH-dependent photosynthesis-control in preventing light induced damage to both photosystem II and photosystem I.
    Barbato R; Tadini L; Cannata R; Peracchio C; Jeran N; Alboresi A; Morosinotto T; Bajwa AA; Paakkarinen V; Suorsa M; Aro EM; Pesaresi P
    Sci Rep; 2020 Apr; 10(1):6770. PubMed ID: 32317747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A pigment-binding protein essential for regulation of photosynthetic light harvesting.
    Li XP; Björkman O; Shih C; Grossman AR; Rosenquist M; Jansson S; Niyogi KK
    Nature; 2000 Jan; 403(6768):391-5. PubMed ID: 10667783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of the pigment-protein complex LHCBM1 in nonphotochemical quenching in Chlamydomonas reinhardtii.
    Liu X; Nawrocki WJ; Croce R
    Plant Physiol; 2024 Jan; 194(2):936-944. PubMed ID: 37847042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the chloroplast peroxidase system in the chlorophyte Chlamydomonas reinhardtii, the bryophyte Physcomitrella patens, the lycophyte Selaginella moellendorffii and the seed plant Arabidopsis thaliana.
    Pitsch NT; Witsch B; Baier M
    BMC Plant Biol; 2010 Jun; 10():133. PubMed ID: 20584316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improper excess light energy dissipation in Arabidopsis results in a metabolic reprogramming.
    Frenkel M; Külheim C; Jänkänpää HJ; Skogström O; Dall'Osto L; Agren J; Bassi R; Moritz T; Moen J; Jansson S
    BMC Plant Biol; 2009 Jan; 9():12. PubMed ID: 19171025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The evolution of the photoprotective antenna proteins in oxygenic photosynthetic eukaryotes.
    Giovagnetti V; Ruban AV
    Biochem Soc Trans; 2018 Oct; 46(5):1263-1277. PubMed ID: 30154089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photosynthetic properties of an Arabidopsis thaliana mutant possessing a defective PsbS gene.
    Peterson RB; Havir EA
    Planta; 2001 Nov; 214(1):142-52. PubMed ID: 11762164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii.
    Dent RM; Han M; Niyogi KK
    Trends Plant Sci; 2001 Aug; 6(8):364-71. PubMed ID: 11495790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoprotection in the green tidal alga Ulva prolifera: role of LHCSR and PsbS proteins in response to high light stress.
    Mou S; Zhang X; Dong M; Fan X; Xu J; Cao S; Xu D; Wang W; Ye N
    Plant Biol (Stuttg); 2013 Nov; 15(6):1033-9. PubMed ID: 23865617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased biomass productivity in green algae by tuning non-photochemical quenching.
    Berteotti S; Ballottari M; Bassi R
    Sci Rep; 2016 Feb; 6():21339. PubMed ID: 26888481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.