These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20505228)

  • 1. A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates.
    Van Liedekerke P; Ghysels P; Tijskens E; Samaey G; Smeedts B; Roose D; Ramon H
    Phys Biol; 2010 May; 7(2):026006. PubMed ID: 20505228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle-based model to simulate the micromechanics of biological cells.
    Van Liedekerke P; Tijskens E; Ramon H; Ghysels P; Samaey G; Roose D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061906. PubMed ID: 20866439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs.
    Hieber SE; Walther JH; Koumoutsakos P
    Technol Health Care; 2004; 12(4):305-14. PubMed ID: 15502281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A particle based model to simulate microscale morphological changes of plant tissues during drying.
    Karunasena HC; Senadeera W; Brown RJ; Gu YT
    Soft Matter; 2014 Aug; 10(29):5249-68. PubMed ID: 24740612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A meshless rheological model for blood-vessel interaction in endovascular simulation.
    Chui YP; Heng PA
    Prog Biophys Mol Biol; 2010 Dec; 103(2-3):252-61. PubMed ID: 20868705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poro-viscoelastic behavior of gelatin hydrogels under compression-implications for bioelasticity imaging.
    Kalyanam S; Yapp RD; Insana MF
    J Biomech Eng; 2009 Aug; 131(8):081005. PubMed ID: 19604017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms.
    Wolters BJ; Rutten MC; Schurink GW; Kose U; de Hart J; van de Vosse FN
    Med Eng Phys; 2005 Dec; 27(10):871-83. PubMed ID: 16157501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics.
    Müller M; Schirm S; Teschner M
    Technol Health Care; 2004; 12(1):25-31. PubMed ID: 15096684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth.
    Dumais J; Shaw SL; Steele CR; Long SR; Ray PM
    Int J Dev Biol; 2006; 50(2-3):209-22. PubMed ID: 16479489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-scale simulation of plant tissue deformation using a model for individual cell mechanics.
    Ghysels P; Samaey G; Tijskens B; Van Liedekerke P; Ramon H; Roose D
    Phys Biol; 2009 Mar; 6(1):016009. PubMed ID: 19321921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive material modeling of cell: a micromechanics approach.
    Unnikrishnan GU; Unnikrishnan VU; Reddy JN
    J Biomech Eng; 2007 Jun; 129(3):315-23. PubMed ID: 17536898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanics and modeling of plant cell growth.
    Geitmann A; Ortega JK
    Trends Plant Sci; 2009 Sep; 14(9):467-78. PubMed ID: 19717328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microplane constitutive model and computational framework for blood vessel tissue.
    Caner FC; Carol I
    J Biomech Eng; 2006 Jun; 128(3):419-27. PubMed ID: 16706591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structural fingertip model for simulating of the biomechanics of tactile sensation.
    Wu JZ; Dong RG; Rakheja S; Schopper AW; Smutz WP
    Med Eng Phys; 2004 Mar; 26(2):165-75. PubMed ID: 15036184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-dimensional finite element model for the mechanics of cell-cell interactions.
    Viens D; Brodland GW
    J Biomech Eng; 2007 Oct; 129(5):651-7. PubMed ID: 17887890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell adhesion mechanisms and stress relaxation in the mechanics of tumours.
    Ambrosi D; Preziosi L
    Biomech Model Mechanobiol; 2009 Oct; 8(5):397-413. PubMed ID: 19115069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smoothed particle hydrodynamic modelling of the cerebrospinal fluid for brain biomechanics: Accuracy and stability.
    Duckworth H; Sharp DJ; Ghajari M
    Int J Numer Method Biomed Eng; 2021 Apr; 37(4):e3440. PubMed ID: 33480161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissipative particle dynamics simulations for biological tissues: rheology and competition.
    Basan M; Prost J; Joanny JF; Elgeti J
    Phys Biol; 2011 Apr; 8(2):026014. PubMed ID: 21460431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms.
    Papaharilaou Y; Ekaterinaris JA; Manousaki E; Katsamouris AN
    J Biomech; 2007; 40(2):367-77. PubMed ID: 16500664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional finite element simulations of the mechanical response of the fingertip to static and dynamic compressions.
    Wu JZ; Welcome DE; Dong RG
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):55-63. PubMed ID: 16880157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.