These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 20505234)
1. Comparative investigation of viability, metabolism and osteogenic capability of tissue-engineered bone preserved in sealed osteogenic media at 37 °C and 4 °C. Wang H; Liu G; Zhou G; Cen L; Cui L; Cao Y Biomed Mater; 2010 Jun; 5(3):35010. PubMed ID: 20505234 [TBL] [Abstract][Full Text] [Related]
2. Tissue-engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells. Liu G; Shu C; Cui L; Liu W; Cao Y Cryobiology; 2008 Jun; 56(3):209-15. PubMed ID: 18430412 [TBL] [Abstract][Full Text] [Related]
3. Vitreous cryopreservation of tissue engineered bone composed of bone marrow mesenchymal stem cells and partially demineralized bone matrix. Yin H; Cui L; Liu G; Cen L; Cao Y Cryobiology; 2009 Oct; 59(2):180-7. PubMed ID: 19576196 [TBL] [Abstract][Full Text] [Related]
4. The pH in the microenvironment of human mesenchymal stem cells is a critical factor for optimal osteogenesis in tissue-engineered constructs. Monfoulet LE; Becquart P; Marchat D; Vandamme K; Bourguignon M; Pacard E; Viateau V; Petite H; Logeart-Avramoglou D Tissue Eng Part A; 2014 Jul; 20(13-14):1827-40. PubMed ID: 24447025 [TBL] [Abstract][Full Text] [Related]
5. A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage. Filipowska J; Reilly GC; Osyczka AM Biotechnol Bioeng; 2016 Aug; 113(8):1814-24. PubMed ID: 26806539 [TBL] [Abstract][Full Text] [Related]
6. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. Chen G; Dong C; Yang L; Lv Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287 [TBL] [Abstract][Full Text] [Related]
7. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
8. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate. Liu G; Zhao L; Cui L; Liu W; Cao Y Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439 [TBL] [Abstract][Full Text] [Related]
9. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Yang XB; Bhatnagar RS; Li S; Oreffo RO Tissue Eng; 2004; 10(7-8):1148-59. PubMed ID: 15363171 [TBL] [Abstract][Full Text] [Related]
11. Vitreous cryopreservation of nanofibrous tissue-engineered constructs generated using mesenchymal stromal cells. Wen F; Magalhães R; Gouk SS; Bhakta G; Lee KH; Hutmacher DW; Kuleshova LL Tissue Eng Part C Methods; 2009 Mar; 15(1):105-14. PubMed ID: 19196127 [TBL] [Abstract][Full Text] [Related]
12. Bone repair using periodontal ligament progenitor cell-seeded constructs. Tour G; Wendel M; Moll G; Tcacencu I J Dent Res; 2012 Aug; 91(8):789-94. PubMed ID: 22736447 [TBL] [Abstract][Full Text] [Related]
13. BMP-2 Derived Peptide and Dexamethasone Incorporated Mesoporous Silica Nanoparticles for Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells. Zhou X; Feng W; Qiu K; Chen L; Wang W; Nie W; Mo X; He C ACS Appl Mater Interfaces; 2015 Jul; 7(29):15777-89. PubMed ID: 26133753 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Minardi S; Corradetti B; Taraballi F; Sandri M; Van Eps J; Cabrera FJ; Weiner BK; Tampieri A; Tasciotti E Biomaterials; 2015 Sep; 62():128-37. PubMed ID: 26048479 [TBL] [Abstract][Full Text] [Related]
15. Bone formation by mesenchymal progenitor cells cultured on dense and microporous hydroxyapatite particles. Fischer EM; Layrolle P; Van Blitterswijk CA; De Bruijn JD Tissue Eng; 2003 Dec; 9(6):1179-88. PubMed ID: 14670105 [TBL] [Abstract][Full Text] [Related]
16. MR assessment of osteogenic differentiation in tissue-engineered constructs. Peptan IA; Hong L; Xu H; Magin RL Tissue Eng; 2006 Apr; 12(4):843-51. PubMed ID: 16674297 [TBL] [Abstract][Full Text] [Related]
17. Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats. Kruyt MC; de Bruijn JD; Wilson CE; Oner FC; van Blitterswijk CA; Verbout AJ; Dhert WJ Tissue Eng; 2003 Apr; 9(2):327-36. PubMed ID: 12740095 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of bone marrow-derived mesenchymal stem cells after cryopreservation and hypothermic storage in clinically safe medium. Ginis I; Grinblat B; Shirvan MH Tissue Eng Part C Methods; 2012 Jun; 18(6):453-63. PubMed ID: 22196031 [TBL] [Abstract][Full Text] [Related]
19. Cryopreservation of hMSCs seeded silk nanofibers based tissue engineered constructs. Bissoyi A; Pramanik K; Panda NN; Sarangi SK Cryobiology; 2014 Jun; 68(3):332-42. PubMed ID: 24759299 [TBL] [Abstract][Full Text] [Related]
20. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Datta N; Holtorf HL; Sikavitsas VI; Jansen JA; Mikos AG Biomaterials; 2005 Mar; 26(9):971-7. PubMed ID: 15369685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]