These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
692 related articles for article (PubMed ID: 20505524)
1. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. Lopaschuk GD; Jaswal JS J Cardiovasc Pharmacol; 2010 Aug; 56(2):130-40. PubMed ID: 20505524 [TBL] [Abstract][Full Text] [Related]
2. Early Postnatal Cardiomyocyte Proliferation Requires High Oxidative Energy Metabolism. de Carvalho AETS; Bassaneze V; Forni MF; Keusseyan AA; Kowaltowski AJ; Krieger JE Sci Rep; 2017 Nov; 7(1):15434. PubMed ID: 29133820 [TBL] [Abstract][Full Text] [Related]
3. Postnatal cardiomyocyte growth and mitochondrial reorganization cause multiple changes in the proteome of human cardiomyocytes. Pohjoismäki JL; Krüger M; Al-Furoukh N; Lagerstedt A; Karhunen PJ; Braun T Mol Biosyst; 2013 Jun; 9(6):1210-9. PubMed ID: 23459711 [TBL] [Abstract][Full Text] [Related]
4. Early origins of cardiac hypertrophy: does cardiomyocyte attrition programme for pathological 'catch-up' growth of the heart? Porrello ER; Widdop RE; Delbridge LM Clin Exp Pharmacol Physiol; 2008 Nov; 35(11):1358-64. PubMed ID: 18759854 [TBL] [Abstract][Full Text] [Related]
5. Fatty Acid-Treated Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes Exhibit Adult Cardiomyocyte-Like Energy Metabolism Phenotypes. Horikoshi Y; Yan Y; Terashvili M; Wells C; Horikoshi H; Fujita S; Bosnjak ZJ; Bai X Cells; 2019 Sep; 8(9):. PubMed ID: 31533262 [TBL] [Abstract][Full Text] [Related]
6. Unique metabolic features of stem cells, cardiomyocytes, and their progenitors. Gaspar JA; Doss MX; Hengstler JG; Cadenas C; Hescheler J; Sachinidis A Circ Res; 2014 Apr; 114(8):1346-60. PubMed ID: 24723659 [TBL] [Abstract][Full Text] [Related]
7. Targets for modulation of fatty acid oxidation in the heart. Lopaschuk GD Curr Opin Investig Drugs; 2004 Mar; 5(3):290-4. PubMed ID: 15083595 [TBL] [Abstract][Full Text] [Related]
8. Contractile Work Contributes to Maturation of Energy Metabolism in hiPSC-Derived Cardiomyocytes. Ulmer BM; Stoehr A; Schulze ML; Patel S; Gucek M; Mannhardt I; Funcke S; Murphy E; Eschenhagen T; Hansen A Stem Cell Reports; 2018 Mar; 10(3):834-847. PubMed ID: 29503093 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration. Padula SL; Velayutham N; Yutzey KE Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33807107 [TBL] [Abstract][Full Text] [Related]
10. Cardiomyocytes re-enter the cell cycle and contribute to heart development after differentiation from cardiac progenitors expressing Isl1 in chick embryo. Hayashi S; Inoue A Dev Growth Differ; 2007 Apr; 49(3):229-39. PubMed ID: 17394601 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Lehman JJ; Kelly DP Clin Exp Pharmacol Physiol; 2002 Apr; 29(4):339-45. PubMed ID: 11985547 [TBL] [Abstract][Full Text] [Related]
12. Human cardiomyocyte progenitor cell-derived cardiomyocytes display a maturated electrical phenotype. de Boer TP; van Veen TA; Jonsson MK; Kok BG; Metz CH; Sluijter JP; Doevendans PA; de Bakker JM; Goumans MJ; van der Heyden MA J Mol Cell Cardiol; 2010 Jan; 48(1):254-60. PubMed ID: 19460390 [TBL] [Abstract][Full Text] [Related]
13. ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart. Alaynick WA; Kondo RP; Xie W; He W; Dufour CR; Downes M; Jonker JW; Giles W; Naviaux RK; Giguère V; Evans RM Cell Metab; 2007 Jul; 6(1):13-24. PubMed ID: 17618853 [TBL] [Abstract][Full Text] [Related]
14. Alterations in energy metabolism in cardiomyopathies. Taha M; Lopaschuk GD Ann Med; 2007; 39(8):594-607. PubMed ID: 17934906 [TBL] [Abstract][Full Text] [Related]
15. Cardiac hypertrophy, substrate utilization and metabolic remodelling: cause or effect? Ritchie RH; Delbridge LM Clin Exp Pharmacol Physiol; 2006; 33(1-2):159-66. PubMed ID: 16445716 [TBL] [Abstract][Full Text] [Related]
16. Metabolic remodelling of the failing heart: beneficial or detrimental? van Bilsen M; van Nieuwenhoven FA; van der Vusse GJ Cardiovasc Res; 2009 Feb; 81(3):420-8. PubMed ID: 18854380 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of glycolysis in cardiomyocytes elevates endothelin-1 expression through the transcriptional factor hypoxia-inducible factor-1 alpha. Kakinuma Y; Miyauchi T; Suzuki T; Yuki K; Murakoshi N; Goto K; Yamaguchi I Clin Sci (Lond); 2002 Aug; 103 Suppl 48():210S-214S. PubMed ID: 12193088 [TBL] [Abstract][Full Text] [Related]
18. AMP-activated protein kinase control of energy metabolism in the ischemic heart. Lopaschuk GD Int J Obes (Lond); 2008 Sep; 32 Suppl 4():S29-35. PubMed ID: 18719595 [TBL] [Abstract][Full Text] [Related]
19. Essential role of Smad4 in maintaining cardiomyocyte proliferation during murine embryonic heart development. Qi X; Yang G; Yang L; Lan Y; Weng T; Wang J; Wu Z; Xu J; Gao X; Yang X Dev Biol; 2007 Nov; 311(1):136-46. PubMed ID: 17869237 [TBL] [Abstract][Full Text] [Related]
20. Cardiomyocyte death and renewal in the normal and diseased heart. Buja LM; Vela D Cardiovasc Pathol; 2008; 17(6):349-74. PubMed ID: 18402842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]