These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 2050559)

  • 41. Intercellular junctions in the gill epithelium of the Atlantic hagfish, Myxine glutinosa.
    Bartels H
    Cell Tissue Res; 1988; 254(3):573-83. PubMed ID: 3233652
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physiological and molecular characterization of urea transport by the gills of the Lake Magadi tilapia (Alcolapia grahami).
    Walsh PJ; Grosell M; Goss GG; Bergman HL; Bergman AN; Wilson P; Laurent P; Alper SL; Smith CP; Kamunde C; Wood CM
    J Exp Biol; 2001 Feb; 204(Pt 3):509-20. PubMed ID: 11171302
    [TBL] [Abstract][Full Text] [Related]  

  • 43. New insights into fish ion regulation and mitochondrion-rich cells.
    Hwang PP; Lee TH
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):479-97. PubMed ID: 17689996
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The distribution of mitochondria-rich cells in the gills of air-breathing fishes.
    Lin HC; Sung WT
    Physiol Biochem Zool; 2003; 76(2):215-28. PubMed ID: 12794675
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The chloride cell: structure and function in the gills of freshwater fishes.
    Perry SF
    Annu Rev Physiol; 1997; 59():325-47. PubMed ID: 9074767
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two types of chloride cells in the gill epithelium of a freshwater-adapted euryhaline fish: Lebistes reticulatus; their modifications during adaptation to saltwater.
    Pisam M; Caroff A; Rambourg A
    Am J Anat; 1987 May; 179(1):40-50. PubMed ID: 3618519
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The African lungfish (Protopterus dolloi): ionoregulation and osmoregulation in a fish out of water.
    Wilkie MP; Morgan TP; Galvez F; Smith RW; Kajimura M; Ip YK; Wood CM
    Physiol Biochem Zool; 2007; 80(1):99-112. PubMed ID: 17160883
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Observations on the relationship between "chloride-type" and "pseudobranch-type" cells in the gills of a fish, Oligocottus maculosus.
    Newstead JD
    Z Zellforsch Mikrosk Anat; 1971; 116(1):1-6. PubMed ID: 5103403
    [No Abstract]   [Full Text] [Related]  

  • 49. Killifish opercular skin: a flat epithelium with a high density of chloride cells.
    Karnaky KG; Kinter WB
    J Exp Zool; 1977 Mar; 199(3):355-64. PubMed ID: 850116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fine structure of the agranular cytoplasmic tubules in the lamprey chloride cells.
    Nakao T
    Anat Rec; 1974 Jan; 178(1):49-61. PubMed ID: 4855557
    [No Abstract]   [Full Text] [Related]  

  • 51. Ion-deficient environment induces the expression of basolateral chloride channel, ClC-3-like protein, in gill mitochondrion-rich cells for chloride uptake of the tilapia Oreochromis mossambicus.
    Tang CH; Lee TH
    Physiol Biochem Zool; 2011; 84(1):54-67. PubMed ID: 21091354
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrastructure of chloride cells in young adults of the anadromous sea lamprey, Petromyzon marinus L., in fresh water and during adaptation to sea water.
    Peek WD; Youson JH
    J Morphol; 1979 May; 160(2):143-64. PubMed ID: 458859
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Appearance of cuboidal cells in relation to salinity in gills of Fundulus heteroclitus, a species exhibiting branchial Na+ but not Cl- uptake in freshwater.
    Laurent P; Chevalier C; Wood CM
    Cell Tissue Res; 2006 Sep; 325(3):481-92. PubMed ID: 16639617
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recruitment and degeneration of mitochondrion-rich cells in the gills of Mozambique tilapia Oreochromis mossambicus during adaptation to a hyperosmotic environment.
    Inokuchi M; Kaneko T
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Jul; 162(3):245-51. PubMed ID: 22487482
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gill arch of the mullet, Mugil cephalus III. Rate of response to salinity change.
    Hossler FE
    Am J Physiol; 1980 Mar; 238(3):R160-4. PubMed ID: 7369390
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Selective demonstration by tannic acid of a special cytoplasmic tubular system in the chloride cells of teleost gills.
    Fujita M; Yamamoto T
    Arch Histol Jpn; 1984 Mar; 47(1):113-8. PubMed ID: 6742986
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, Oreochromis mossambicus.
    Lee TH; Feng SH; Lin CH; Hwang YH; Huang CL; Hwang PP
    Zoolog Sci; 2003 Jan; 20(1):29-36. PubMed ID: 12560598
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Anatomical relationships of the ionocytes (chloride cells) with the branchial venous compartment: definition of two types of epithelium in fish gills].
    Laurent P; Dunel S
    C R Acad Hebd Seances Acad Sci D; 1978 May; 286(20):1447-50. PubMed ID: 97006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electron microscope studies on the gill filaments of Fundulus heteroclitus from sea water and fresh water with special reference to the ultrastructural organization of the "chloride cell".
    KESSEL RG; BEAMS HW
    J Ultrastruct Res; 1962 Feb; 6():77-87. PubMed ID: 14455393
    [No Abstract]   [Full Text] [Related]  

  • 60. Intracisternal tubules of lamprey chloride cells.
    Nakao T; Uchinomiya K
    J Electron Microsc (Tokyo); 1974; 23(1):51-5. PubMed ID: 4852537
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.