BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 20506313)

  • 21. A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting.
    Herbert KM; Sarkar SK; Mills M; Delgado De la Herran HC; Neuman KC; Steitz JA
    RNA; 2016 Feb; 22(2):175-83. PubMed ID: 26683315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide identification of targets of the drosha-pasha/DGCR8 complex.
    Kadener S; Rodriguez J; Abruzzi KC; Khodor YL; Sugino K; Marr MT; Nelson S; Rosbash M
    RNA; 2009 Apr; 15(4):537-45. PubMed ID: 19223442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Ubiquitin-specific Protease USP36 Associates with the Microprocessor Complex and Regulates miRNA Biogenesis by SUMOylating DGCR8.
    Li Y; Carey TS; Feng CH; Zhu HM; Sun XX; Dai MS
    Cancer Res Commun; 2023 Mar; 3(3):459-470. PubMed ID: 36950067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Post-transcriptional control of DGCR8 expression by the Microprocessor.
    Triboulet R; Chang HM; Lapierre RJ; Gregory RI
    RNA; 2009 Jun; 15(6):1005-11. PubMed ID: 19383765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N6-methyladenosine marks primary microRNAs for processing.
    Alarcón CR; Lee H; Goodarzi H; Halberg N; Tavazoie SF
    Nature; 2015 Mar; 519(7544):482-5. PubMed ID: 25799998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The kinase ABL phosphorylates the microprocessor subunit DGCR8 to stimulate primary microRNA processing in response to DNA damage.
    Tu CC; Zhong Y; Nguyen L; Tsai A; Sridevi P; Tarn WY; Wang JY
    Sci Signal; 2015 Jun; 8(383):ra64. PubMed ID: 26126715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SUMOylation at K707 of DGCR8 controls direct function of primary microRNA.
    Zhu C; Chen C; Huang J; Zhang H; Zhao X; Deng R; Dou J; Jin H; Chen R; Xu M; Chen Q; Wang Y; Yu J
    Nucleic Acids Res; 2015 Sep; 43(16):7945-60. PubMed ID: 26202964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex.
    Girvan HM; Bradley JM; Cheesman MR; Kincaid JR; Liu Y; Czarnecki K; Fisher K; Leys D; Rigby SE; Munro AW
    Biochemistry; 2016 Sep; 55(36):5073-83. PubMed ID: 27546061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Posttranscriptional crossregulation between Drosha and DGCR8.
    Han J; Pedersen JS; Kwon SC; Belair CD; Kim YK; Yeom KH; Yang WY; Haussler D; Blelloch R; Kim VN
    Cell; 2009 Jan; 136(1):75-84. PubMed ID: 19135890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DiGeorge critical region 8 (DGCR8) is a double-cysteine-ligated heme protein.
    Barr I; Smith AT; Senturia R; Chen Y; Scheidemantle BD; Burstyn JN; Guo F
    J Biol Chem; 2011 May; 286(19):16716-25. PubMed ID: 21454614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex.
    Han J; Lee Y; Yeom KH; Nam JW; Heo I; Rhee JK; Sohn SY; Cho Y; Zhang BT; Kim VN
    Cell; 2006 Jun; 125(5):887-901. PubMed ID: 16751099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deformability in the cleavage site of primary microRNA is not sensed by the double-stranded RNA binding domains in the microprocessor component DGCR8.
    Quarles KA; Chadalavada D; Showalter SA
    Proteins; 2015 Jun; 83(6):1165-79. PubMed ID: 25851436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CtIP suppresses primary microRNA maturation and promotes metastasis of colon cancer cells in a xenograft mouse model.
    Ren J; Wu Y; Wang Y; Zhao Y; Li Y; Hao S; Lin L; Zhang S; Xu X; Wang H
    J Biol Chem; 2021; 296():100707. PubMed ID: 33901493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SRSF3 recruits DROSHA to the basal junction of primary microRNAs.
    Kim K; Nguyen TD; Li S; Nguyen TA
    RNA; 2018 Jul; 24(7):892-898. PubMed ID: 29615481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cobalt(III) Protoporphyrin Activates the DGCR8 Protein and Can Compensate microRNA Processing Deficiency.
    Barr I; Weitz SH; Atkin T; Hsu P; Karayiorgou M; Gogos JA; Weiss S; Guo F
    Chem Biol; 2015 Jun; 22(6):793-802. PubMed ID: 26091172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cryo-EM Structures of Human Drosha and DGCR8 in Complex with Primary MicroRNA.
    Partin AC; Zhang K; Jeong BC; Herrell E; Li S; Chiu W; Nam Y
    Mol Cell; 2020 May; 78(3):411-422.e4. PubMed ID: 32220646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Basis for the Single-Nucleotide Precision of Primary microRNA Processing.
    Kwon SC; Baek SC; Choi YG; Yang J; Lee YS; Woo JS; Kim VN
    Mol Cell; 2019 Feb; 73(3):505-518.e5. PubMed ID: 30554947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autoregulatory mechanisms controlling the Microprocessor.
    Triboulet R; Gregory RI
    Adv Exp Med Biol; 2010; 700():56-66. PubMed ID: 21627030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic origins of differential RNA binding function in two dsRBDs from the miRNA "microprocessor" complex.
    Wostenberg C; Quarles KA; Showalter SA
    Biochemistry; 2010 Dec; 49(50):10728-36. PubMed ID: 21073201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microprocessor dynamics and interactions at endogenous imprinted C19MC microRNA genes.
    Bellemer C; Bortolin-Cavaillé ML; Schmidt U; Jensen SM; Kjems J; Bertrand E; Cavaillé J
    J Cell Sci; 2012 Jun; 125(Pt 11):2709-20. PubMed ID: 22393237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.