BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 20506428)

  • 1. Estimation of global structural and transport properties of peptides through the modeling of their CZE mobility data.
    Piaggio MV; Peirotti MB; Deiber JA
    J Sep Sci; 2010 Aug; 33(16):2423-9. PubMed ID: 20506428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global conformations of proteins as predicted from the modeling of their CZE mobility data.
    Deiber JA; Piaggio MV; Peirotti MB
    Electrophoresis; 2011 Oct; 32(20):2779-87. PubMed ID: 21948196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration, charge, size, and shape characteristics of peptides from their CZE analyses.
    Peirotti MB; Piaggio MV; Deiber JA
    J Sep Sci; 2008 Feb; 31(3):548-54. PubMed ID: 18266265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the evaluation of net charge, hydrodynamic size and shape of peptides through experimental electrophoretic mobilities obtained from CZE.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2006 Dec; 27(23):4631-47. PubMed ID: 17136715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the microenvironment-pH and charge and size characteristics of amino acids through their electrophoretic mobilities determined by CZE.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2007 Oct; 28(20):3658-73. PubMed ID: 17941132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the interplay among charge, hydration and shape of proteins through the modeling of their CZE mobility data.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2009 Jul; 30(13):2328-36. PubMed ID: 19569126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global chain properties of an all l-α-eicosapeptide with a secondary α-helix and its all retro d-inverso-α-eicosapeptide estimated through the modeling of their CZE-determined electrophoretic mobilities.
    Deiber JA; Piaggio MV; Peirotti MB
    Electrophoresis; 2014 Mar; 35(5):755-61. PubMed ID: 24293200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the electrophoresis and transport of peptides: the effective sphere model and complex formation.
    Allison SA; Pei H; Allen M; Brown J; Kim CI; Zhen Y
    J Sep Sci; 2010 Aug; 33(16):2439-46. PubMed ID: 20645386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the electrophoretic mobility and diffusion of weakly charged peptides.
    Xin Y; Mitchell H; Cameron H; Allison SA
    J Phys Chem B; 2006 Jan; 110(2):1038-45. PubMed ID: 16471640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of synthetic polypeptide conformations and molecular geometrical parameters by nonaqueous CE.
    Plasson R; Vayaboury W; Giani O; Cottet H
    Electrophoresis; 2007 Oct; 28(20):3617-24. PubMed ID: 17941129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of background electrolyte on the estimation of protein hydrodynamic radius and net charge through capillary zone electrophoresis.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2005 Sep; 26(17):3232-46. PubMed ID: 16097025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The free solution electrophoretic mobility of peptides by a bead modeling methodology.
    Pei H; Allison S
    J Chromatogr A; 2009 Mar; 1216(10):1908-16. PubMed ID: 18823631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the electrophoresis of peptides and proteins: improvements in the "bead method" to include ion relaxation and "finite size effects".
    Xin Y; Hess R; Ho N; Allison S
    J Phys Chem B; 2006 Dec; 110(49):25033-44. PubMed ID: 17149927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the slip length in the slipping friction between background electrolytes and peptides through the modeling of their capillary zone electrophoretic mobilities.
    Deiber JA; Piaggio MV; Peirotti MB
    Electrophoresis; 2013 Sep; 34(18):2648-54. PubMed ID: 23712447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using electrophoretic mobility and bead modeling to characterize the charge and secondary structure of peptides.
    Pei H; Xin Y; Allison SA
    J Sep Sci; 2008 Feb; 31(3):555-64. PubMed ID: 18219654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From small charged molecules to oligomers: a semiempirical approach to the modeling of actual mobility in free solution.
    Cottet H; Gareil P
    Electrophoresis; 2000 May; 21(8):1493-504. PubMed ID: 10832879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay between electrophoretic mobility and intrinsic viscosity of polypeptide chains.
    Deiber JA; Peirotti MB; Piaggio MV
    Electrophoresis; 2012 Mar; 33(6):990-9. PubMed ID: 22528418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural properties of hydration shell around various conformations of simple polypeptides.
    Czapiewski D; Zielkiewicz J
    J Phys Chem B; 2010 Apr; 114(13):4536-50. PubMed ID: 20232827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of sample pH on the conformational backbone dynamics of a pseudotripeptide (H-Tyr-Tic psi [CH2-NH]Phe-OH) incorporating a reduced peptide bond: an NMR investigation.
    Carpenter KA; Wilkes BC; Schiller PW
    Biopolymers; 1995 Dec; 36(6):735-49. PubMed ID: 8555421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic mobility equation for protein with molecular shape and charge multipole effects.
    Kim JY; Ahn SH; Kang ST; Yoon BJ
    J Colloid Interface Sci; 2006 Jul; 299(1):486-92. PubMed ID: 16494895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.