BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20506429)

  • 1. Protein separation using free-flow electrophoresis microchip etched in a single step.
    Wang P; Zhang L; Shan Y; Cong Y; Liang Y; Han B; Liang Z; Zhang Y
    J Sep Sci; 2010 Jul; 33(13):2039-44. PubMed ID: 20506429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using channel depth to isolate and control flow in a micro free-flow electrophoresis device.
    Fonslow BR; Barocas VH; Bowser MT
    Anal Chem; 2006 Aug; 78(15):5369-74. PubMed ID: 16878871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved protein separation by microchip isoelectric focusing with stepwise gradient of electric field strength.
    Cong Y; Liang Y; Zhang L; Zhang W; Zhang Y
    J Sep Sci; 2009 Feb; 32(3):462-5. PubMed ID: 19173333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes.
    Kohlheyer D; Besselink GA; Schlautmann S; Schasfoort RB
    Lab Chip; 2006 Mar; 6(3):374-80. PubMed ID: 16511620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microchip free-flow electrophoresis on glass substrate using laser-printing toner as structural material.
    Pereira de Jesus D; Blanes L; do Lago CL
    Electrophoresis; 2006 Dec; 27(24):4935-42. PubMed ID: 17161008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free-flow electrophoresis on an anodic bonded glass microchip.
    Fonslow BR; Bowser MT
    Anal Chem; 2005 Sep; 77(17):5706-10. PubMed ID: 16131085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microchip free flow planar reversed phase electrochromatography with monolithic stationary phase.
    Wang P; Tao D; Zhang L; Liang Z; Zhang Y
    J Sep Sci; 2009 Aug; 32(15-16):2629-34. PubMed ID: 19585531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microchip isoelectric focusing with monolithic immobilized pH gradient materials for proteins separation.
    Liang Y; Cong Y; Liang Z; Zhang L; Zhang Y
    Electrophoresis; 2009 Dec; 30(23):4034-9. PubMed ID: 19960463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and evaluation of single- and dual-channel (Pi-design) microchip electrophoresis with electrochemical detection.
    Pozo-Ayuso DF; Castaño-Alvarez M; Fernández-la-Villa A; García-Granda M; Fernández-Abedul MT; Costa-García A; Rodríguez-García J
    J Chromatogr A; 2008 Feb; 1180(1-2):193-202. PubMed ID: 18177663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of micro free-flow electrophoresis chip by photocurable monomer binding microfabrication technique for continuous separation of proteins and their numerical simulation.
    Ding H; Li X; Lv X; Xu J; Sun X; Zhang Z; Wang H; Deng Y
    Analyst; 2012 Oct; 137(19):4482-9. PubMed ID: 22874968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a heterogeneous buffer combination in microchip electrophoresis for high-resolution separation by on-line concentration of DNA samples.
    Nagata H; Ishikawa M; Yoshida Y; Tanaka Y; Hirano K
    Electrophoresis; 2008 Sep; 29(18):3744-51. PubMed ID: 18850644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed separation of proteins by microchip electrophoresis using a polyethylene glycol-coated plastic chip with a sodium dodecyl sulfate-linear polyacrylamide solution.
    Nagata H; Tabuchi M; Hirano K; Baba Y
    Electrophoresis; 2005 Jul; 26(14):2687-91. PubMed ID: 15937980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rigid poly(dimethylsiloxane) sandwich electrophoresis microchip based on thin-casting method.
    Liu C; Cui D; Cai H; Chen X; Geng Z
    Electrophoresis; 2006 Jul; 27(14):2917-23. PubMed ID: 16721901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a microfabricated palladium decoupler/electrochemical detector for microchip capillary electrophoresis using a hybrid glass/poly(dimethylsiloxane) device.
    Lacher NA; Lunte SM; Martin RS
    Anal Chem; 2004 May; 76(9):2482-91. PubMed ID: 15117187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of buffer flow on DNA separation in a microfabricated electrophoresis system.
    Chen Z; Burns MA
    Electrophoresis; 2005 Dec; 26(24):4718-28. PubMed ID: 16294296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Faster and improved microchip electrophoresis using a capillary bundle.
    Sun Y; Kwok YC; Nguyen NT
    Electrophoresis; 2007 Dec; 28(24):4765-8. PubMed ID: 18072216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of DNA fragments for fast diagnosis by microchip electrophoresis using programmed field strength gradient.
    Kang SH; Park M; Cho K
    Electrophoresis; 2005 Aug; 26(16):3179-84. PubMed ID: 16041706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid analysis of oligosaccharides derived from glycoproteins by microchip electrophoresis.
    Dang F; Kakehi K; Nakajima K; Shinohara Y; Ishikawa M; Kaji N; Tokeshi M; Baba Y
    J Chromatogr A; 2006 Mar; 1109(2):138-43. PubMed ID: 16376899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.
    Shadpour H; Hupert ML; Patterson D; Liu C; Galloway M; Stryjewski W; Goettert J; Soper SA
    Anal Chem; 2007 Feb; 79(3):870-8. PubMed ID: 17263312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed microchip electrophoresis method for the separation of (R,S)-naproxen.
    Guihen E; Hogan AM; Glennon JD
    Chirality; 2009 Feb; 21(2):292-8. PubMed ID: 18537165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.