BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 20506476)

  • 1. The zebrafish cerebellar upper rhombic lip generates tegmental hindbrain nuclei by long-distance migration in an evolutionary conserved manner.
    Volkmann K; Chen YY; Harris MP; Wullimann MF; Köster RW
    J Comp Neurol; 2010 Jul; 518(14):2794-817. PubMed ID: 20506476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The zebrafish cerebellar rhombic lip is spatially patterned in producing granule cell populations of different functional compartments.
    Volkmann K; Rieger S; Babaryka A; Köster RW
    Dev Biol; 2008 Jan; 313(1):167-80. PubMed ID: 18037399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The adult central nervous cholinergic system of a neurogenetic model animal, the zebrafish Danio rerio.
    Mueller T; Vernier P; Wullimann MF
    Brain Res; 2004 Jun; 1011(2):156-69. PubMed ID: 15157802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How neuronal migration contributes to the morphogenesis of the CNS: insights from the zebrafish.
    Mione M; Baldessari D; Deflorian G; Nappo G; Santoriello C
    Dev Neurosci; 2008; 30(1-3):65-81. PubMed ID: 18075256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors.
    Machold R; Fishell G
    Neuron; 2005 Oct; 48(1):17-24. PubMed ID: 16202705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. her5 expression reveals a pool of neural stem cells in the adult zebrafish midbrain.
    Chapouton P; Adolf B; Leucht C; Tannhäuser B; Ryu S; Driever W; Bally-Cuif L
    Development; 2006 Nov; 133(21):4293-303. PubMed ID: 17038515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum.
    Wang VY; Rose MF; Zoghbi HY
    Neuron; 2005 Oct; 48(1):31-43. PubMed ID: 16202707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precerebellar cell groups in the hindbrain of the mouse defined by retrograde tracing and correlated with cumulative Wnt1-cre genetic labeling.
    Fu Y; Tvrdik P; Makki N; Paxinos G; Watson C
    Cerebellum; 2011 Sep; 10(3):570-84. PubMed ID: 21479970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The control of precerebellar neuron migration by RNA-binding protein Csde1.
    Kobayashi H; Kawauchi D; Hashimoto Y; Ogata T; Murakami F
    Neuroscience; 2013 Dec; 253():292-303. PubMed ID: 24012837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of Gal4 transgenic zebrafish lines for analysis of development of cerebellar neural circuitry.
    Takeuchi M; Matsuda K; Yamaguchi S; Asakawa K; Miyasaka N; Lal P; Yoshihara Y; Koga A; Kawakami K; Shimizu T; Hibi M
    Dev Biol; 2015 Jan; 397(1):1-17. PubMed ID: 25300581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and evolution of cerebellar neural circuits.
    Hashimoto M; Hibi M
    Dev Growth Differ; 2012 Apr; 54(3):373-89. PubMed ID: 22524607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved and divergent patterns of Reelin expression in the zebrafish central nervous system.
    Costagli A; Kapsimali M; Wilson SW; Mione M
    J Comp Neurol; 2002 Aug; 450(1):73-93. PubMed ID: 12124768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of thyrotropin-releasing hormone (TRH) immunoreactivity in the brain of the zebrafish (Danio rerio).
    Díaz ML; Becerra M; Manso MJ; Anadón R
    J Comp Neurol; 2002 Aug; 450(1):45-60. PubMed ID: 12124766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomy of zebrafish cerebellum and screen for mutations affecting its development.
    Bae YK; Kani S; Shimizu T; Tanabe K; Nojima H; Kimura Y; Higashijima S; Hibi M
    Dev Biol; 2009 Jun; 330(2):406-26. PubMed ID: 19371731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The precerebellar linear nucleus in the mouse defined by connections, immunohistochemistry, and gene expression.
    Fu Y; Tvrdik P; Makki N; Palombi O; Machold R; Paxinos G; Watson C
    Brain Res; 2009 May; 1271():49-59. PubMed ID: 19281800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualization of two distinct classes of neurons by gad2 and zic1 promoter/enhancer elements in the dorsal hindbrain of developing zebrafish reveals neuronal connectivity related to the auditory and lateral line systems.
    Sassa T; Aizawa H; Okamoto H
    Dev Dyn; 2007 Mar; 236(3):706-18. PubMed ID: 17279576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroepithelial cells require fucosylated glycans to guide the migration of vagus motor neuron progenitors in the developing zebrafish hindbrain.
    Ohata S; Kinoshita S; Aoki R; Tanaka H; Wada H; Tsuruoka-Kinoshita S; Tsuboi T; Watabe S; Okamoto H
    Development; 2009 May; 136(10):1653-63. PubMed ID: 19369395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FGF signaling mediates regeneration of the differentiating cerebellum through repatterning of the anterior hindbrain and reinitiation of neuronal migration.
    Köster RW; Fraser SE
    J Neurosci; 2006 Jul; 26(27):7293-304. PubMed ID: 16822987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual and electrosensory circuits of the diencephalon in mormyrids: an evolutionary perspective.
    Wullimann MF; Northcutt RG
    J Comp Neurol; 1990 Jul; 297(4):537-52. PubMed ID: 2384612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal identity transition in the avian cerebellar rhombic lip.
    Wilson LJ; Wingate RJ
    Dev Biol; 2006 Sep; 297(2):508-21. PubMed ID: 16806151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.