These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20507149)

  • 1. Direct observation of acoustic oscillations in InAs nanowires.
    Mariager SO; Khakhulin D; Lemke HT; Kjaer KS; Guerin L; Nuccio L; Sørensen CB; Nielsen MM; Feidenhans'l R
    Nano Lett; 2010 Jul; 10(7):2461-5. PubMed ID: 20507149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nondestructive Complete Mechanical Characterization of Zinc Blende and Wurtzite GaAs Nanowires Using Time-Resolved Pump-Probe Spectroscopy.
    Mante PA; Lehmann S; Anttu N; Dick KA; Yartsev A
    Nano Lett; 2016 Aug; 16(8):4792-8. PubMed ID: 27352041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of liquid indium in the structural purity of wurtzite InAs nanowires that grow on Si(111).
    Biermanns A; Dimakis E; Davydok A; Sasaki T; Geelhaar L; Takahasi M; Pietsch U
    Nano Lett; 2014 Dec; 14(12):6878-83. PubMed ID: 25400142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Observation of Gigahertz Coherent Guided Acoustic Phonons in Free-Standing Single Copper Nanowires.
    Jean C; Belliard L; Cornelius TW; Thomas O; Toimil-Molares ME; Cassinelli M; Becerra L; Perrin B
    J Phys Chem Lett; 2014 Dec; 5(23):4100-4. PubMed ID: 26278939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman scattering study of InAs nanowires under high pressure.
    Majumdar D; Basu A; Dev Mukherjee G; Ercolani D; Sorba L; Singha A
    Nanotechnology; 2014 Nov; 25(46):465704. PubMed ID: 25360514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Picosecond x-ray strain rosette reveals direct laser excitation of coherent transverse acoustic phonons.
    Lee S; Williams GJ; Campana MI; Walko DA; Landahl EC
    Sci Rep; 2016 Jan; 6():19140. PubMed ID: 26751616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy.
    So H; Pan D; Li L; Zhao J
    Nanotechnology; 2017 Mar; 28(13):135704. PubMed ID: 28256450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unit cell parameters of wurtzite InP nanowires determined by x-ray diffraction.
    Kriegner D; Wintersberger E; Kawaguchi K; Wallentin J; Borgström MT; Stangl J
    Nanotechnology; 2011 Oct; 22(42):425704. PubMed ID: 21937785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure dependence of Raman spectrum in InAs nanowires.
    Yazji S; Zardo I; Hertenberger S; Morkötter S; Koblmüller G; Abstreiter G; Postorino P
    J Phys Condens Matter; 2014 Jun; 26(23):235301. PubMed ID: 25932470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dislocation-free axial InAs-on-GaAs nanowires on silicon.
    Beznasyuk DV; Robin E; Hertog MD; Claudon J; Hocevar M
    Nanotechnology; 2017 Sep; 28(36):365602. PubMed ID: 28671871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small atomic displacements recorded in bismuth by the optical reflectivity of femtosecond laser-pulse excitations.
    Boschetto D; Gamaly EG; Rode AV; Luther-Davies B; Glijer D; Garl T; Albert O; Rousse A; Etchepare J
    Phys Rev Lett; 2008 Jan; 100(2):027404. PubMed ID: 18232923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Control of Multiphoton Electron Excitations in InAs Nanowires by Varying Crystal Phase and Light Polarization.
    Mårsell E; Boström E; Harth A; Losquin A; Guo C; Cheng YC; Lorek E; Lehmann S; Nylund G; Stankovski M; Arnold CL; Miranda M; Dick KA; Mauritsson J; Verdozzi C; L'Huillier A; Mikkelsen A
    Nano Lett; 2018 Feb; 18(2):907-915. PubMed ID: 29257889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays.
    Anttu N; Lehmann S; Storm K; Dick KA; Samuelson L; Wu PM; Pistol ME
    Nano Lett; 2014 Oct; 14(10):5650-5. PubMed ID: 25158002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bandgap Energy of Wurtzite InAs Nanowires.
    Rota MB; Ameruddin AS; Fonseka HA; Gao Q; Mura F; Polimeni A; Miriametro A; Tan HH; Jagadish C; Capizzi M
    Nano Lett; 2016 Aug; 16(8):5197-203. PubMed ID: 27467011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type II band alignment in InAs zinc-blende/wurtzite heterostructured nanowires.
    Panda JK; Chakraborty A; Ercolani D; Gemmi M; Sorba L; Roy A
    Nanotechnology; 2016 Oct; 27(41):415201. PubMed ID: 27586817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wurtzite/Zinc-Blende 'K'-shape InAs Nanowires with Embedded Two-Dimensional Wurtzite Plates.
    Kang JH; Galicka M; Kacman P; Shtrikman H
    Nano Lett; 2017 Jan; 17(1):531-537. PubMed ID: 28002676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast electron and phonon response of oriented and diameter-controlled germanium nanowire arrays.
    Li Y; Clady R; Park J; Thombare SV; Schmidt TW; Brongersma ML; McIntyre PC
    Nano Lett; 2014 Jun; 14(6):3427-31. PubMed ID: 24797453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective GaSb radial growth on crystal phase engineered InAs nanowires.
    Namazi L; Nilsson M; Lehmann S; Thelander C; Dick KA
    Nanoscale; 2015 Jun; 7(23):10472-81. PubMed ID: 26006335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of InAs Wurtzite Nanocrosses from Hexagonal and Cubic Basis.
    Krizek F; Kanne T; Razmadze D; Johnson E; Nygård J; Marcus CM; Krogstrup P
    Nano Lett; 2017 Oct; 17(10):6090-6096. PubMed ID: 28895746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical characterization of InAs quantum wells and dots grown radially on wurtzite InP nanowires.
    Lindgren D; Kawaguchi K; Heurlin M; Borgström MT; Pistol ME; Samuelson L; Gustafsson A
    Nanotechnology; 2013 Jun; 24(22):225203. PubMed ID: 23637013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.