These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 20507360)

  • 1. Polypyrimidine tract-binding protein is required for the repression of gene expression by all-trans retinoic acid.
    Tamanoue Y; Yamagishi M; Hongo I; Okamoto H
    Dev Growth Differ; 2010 Jun; 52(5):469-79. PubMed ID: 20507360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons.
    Boutz PL; Stoilov P; Li Q; Lin CH; Chawla G; Ostrow K; Shiue L; Ares M; Black DL
    Genes Dev; 2007 Jul; 21(13):1636-52. PubMed ID: 17606642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suggestive evidence on the involvement of polypyrimidine-tract binding protein in regulating alternative splicing of MAP/microtubule affinity-regulating kinase 4 in glioma.
    Fontana L; Rovina D; Novielli C; Maffioli E; Tedeschi G; Magnani I; Larizza L
    Cancer Lett; 2015 Apr; 359(1):87-96. PubMed ID: 25578778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The polypyrimidine tract binding protein (PTB) represses splicing of exon 6B from the beta-tropomyosin pre-mRNA by directly interfering with the binding of the U2AF65 subunit.
    Saulière J; Sureau A; Expert-Bezançon A; Marie J
    Mol Cell Biol; 2006 Dec; 26(23):8755-69. PubMed ID: 16982681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polypyrimidine tract-binding protein is involved in vivo in repression of a composite internal/3' -terminal exon of the Xenopus alpha-tropomyosin Pre-mRNA.
    Hamon S; Le Sommer C; Mereau A; Allo MR; Hardy S
    J Biol Chem; 2004 May; 279(21):22166-75. PubMed ID: 15010470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PTB regulates the processing of a 3'-terminal exon by repressing both splicing and polyadenylation.
    Le Sommer C; Lesimple M; Mereau A; Menoret S; Allo MR; Hardy S
    Mol Cell Biol; 2005 Nov; 25(21):9595-607. PubMed ID: 16227608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart.
    Ashiya M; Grabowski PJ
    RNA; 1997 Sep; 3(9):996-1015. PubMed ID: 9292499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel modes of splicing repression by PTB.
    Spellman R; Smith CW
    Trends Biochem Sci; 2006 Feb; 31(2):73-6. PubMed ID: 16403634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exon repression by polypyrimidine tract binding protein.
    Amir-Ahmady B; Boutz PL; Markovtsov V; Phillips ML; Black DL
    RNA; 2005 May; 11(5):699-716. PubMed ID: 15840818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinoic acid treatment and cell aggregation independently regulate alternative splicing in P19 cells during neural differentiation.
    Alam AH; Suzuki H; Tsukahara T
    Cell Biol Int; 2010 May; 34(6):631-43. PubMed ID: 20230377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression analysis of the polypyrimidine tract binding protein (PTBP1) and its paralogs PTBP2 and PTBP3 during Xenopus tropicalis embryogenesis.
    Noiret M; Audic Y; Hardy S
    Int J Dev Biol; 2012; 56(9):747-53. PubMed ID: 23124965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the internal IRES element of the zebrafish connexin55.5 reveals functional implication of the polypyrimidine tract binding protein.
    Ul-Hussain M; Dermietzel R; Zoidl G
    BMC Mol Biol; 2008 Oct; 9():92. PubMed ID: 18947383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development.
    Boutz PL; Chawla G; Stoilov P; Black DL
    Genes Dev; 2007 Jan; 21(1):71-84. PubMed ID: 17210790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repression of alpha-actinin SM exon splicing by assisted binding of PTB to the polypyrimidine tract.
    Matlin AJ; Southby J; Gooding C; Smith CW
    RNA; 2007 Aug; 13(8):1214-23. PubMed ID: 17592047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction.
    Villanueva S; Glavic A; Ruiz P; Mayor R
    Dev Biol; 2002 Jan; 241(2):289-301. PubMed ID: 11784112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein.
    Sawicka K; Bushell M; Spriggs KA; Willis AE
    Biochem Soc Trans; 2008 Aug; 36(Pt 4):641-7. PubMed ID: 18631133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein kinase A phosphorylation modulates transport of the polypyrimidine tract-binding protein.
    Xie J; Lee JA; Kress TL; Mowry KL; Black DL
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8776-81. PubMed ID: 12851456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of alternative splicing by PTB and associated factors.
    Spellman R; Rideau A; Matlin A; Gooding C; Robinson F; McGlincy N; Grellscheid SN; Southby J; Wollerton M; Smith CW
    Biochem Soc Trans; 2005 Jun; 33(Pt 3):457-60. PubMed ID: 15916540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1.
    Spellman R; Llorian M; Smith CW
    Mol Cell; 2007 Aug; 27(3):420-34. PubMed ID: 17679092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The PTB interacting protein raver1 regulates alpha-tropomyosin alternative splicing.
    Gromak N; Rideau A; Southby J; Scadden AD; Gooding C; Hüttelmaier S; Singer RH; Smith CW
    EMBO J; 2003 Dec; 22(23):6356-64. PubMed ID: 14633994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.