These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 20507445)
1. Selection for increased cyproconazole tolerance in Mycosphaerella graminicola through local adaptation and in response to host resistance. Zhan J; Stefanato FL; McDonald BA Mol Plant Pathol; 2006 Jul; 7(4):259-68. PubMed ID: 20507445 [TBL] [Abstract][Full Text] [Related]
2. Variation for neutral markers is correlated with variation for quantitative traits in the plant pathogenic fungus Mycosphaerella graminicola. Zhan J; Linde CC; Jürgens T; Merz U; Steinebrunner F; McDonald BA Mol Ecol; 2005 Aug; 14(9):2683-93. PubMed ID: 16029470 [TBL] [Abstract][Full Text] [Related]
3. Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14 alpha-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Leroux P; Albertini C; Gautier A; Gredt M; Walker AS Pest Manag Sci; 2007 Jul; 63(7):688-98. PubMed ID: 17511023 [TBL] [Abstract][Full Text] [Related]
4. Multiple mechanisms account for variation in base-line sensitivity to azole fungicides in field isolates of Mycosphaerella graminicola. Stergiopoulos I; van Nistelrooy JG; Kema GH; De Waard MA Pest Manag Sci; 2003 Dec; 59(12):1333-43. PubMed ID: 14667055 [TBL] [Abstract][Full Text] [Related]
5. Real-time PCR to study the effect of timing and persistence of fungicide application and wheat varietal resistance on Mycosphaerella graminicola and its sterol 14α-demethylation-inhibitor-resistant genotypes. Selim S; Roisin-Fichter C; Andry JB; Bogdanow B; Sambou R Pest Manag Sci; 2014 Jan; 70(1):60-9. PubMed ID: 23457056 [TBL] [Abstract][Full Text] [Related]
6. RELATIONSHIP BETWEEN PATHOGENICITY AND FUNGICIDE TOLERANCE IN THE WHEAT PATHOGEN MYCOSPHAERELLA GRAMINICOLA. Siah A; Deweer C; Tisserant B; Randoux B; Halama P; Reignault P Commun Agric Appl Biol Sci; 2015; 80(3):589-93. PubMed ID: 27141758 [TBL] [Abstract][Full Text] [Related]
7. Sexual reproduction facilitates the adaptation of parasites to antagonistic host environments: Evidence from empirical study in the wheat-Mycosphaerella graminicola system. Zhan J; Mundt CC; McDonald BA Int J Parasitol; 2007 Jul; 37(8-9):861-70. PubMed ID: 17451717 [TBL] [Abstract][Full Text] [Related]
8. Population Structure of Mycosphaerella graminicola: From Lesions to Continents. Linde CC; Zhan J; McDonald BA Phytopathology; 2002 Sep; 92(9):946-55. PubMed ID: 18944019 [TBL] [Abstract][Full Text] [Related]
9. Protective and curative efficacy of prothioconazole against isolates of Mycosphaerella graminicola differing in their in vitro sensitivity to DMI fungicides. Sanssené J; Selim S; Roisin-Fichter C; Djerroud L; Deweer C; Halama P Pest Manag Sci; 2011 Sep; 67(9):1134-40. PubMed ID: 21480466 [TBL] [Abstract][Full Text] [Related]
10. Genetic differentiation at microsatellite loci among populations of Mycosphaerella graminicola from California, Indiana, Kansas, and North Dakota. Gurung S; Goodwin SB; Kabbage M; Bockus WW; Adhikari TB Phytopathology; 2011 Oct; 101(10):1251-9. PubMed ID: 21692645 [TBL] [Abstract][Full Text] [Related]
11. Thermal adaptation in the fungal pathogen Mycosphaerella graminicola. Zhan J; McDonald BA Mol Ecol; 2011 Apr; 20(8):1689-701. PubMed ID: 21395890 [TBL] [Abstract][Full Text] [Related]
12. Sequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides. Wyand RA; Brown JK Fungal Genet Biol; 2005 Aug; 42(8):726-35. PubMed ID: 15916909 [TBL] [Abstract][Full Text] [Related]
13. Multilocus resistance evolution to azole fungicides in fungal plant pathogen populations. Mohd-Assaad N; McDonald BA; Croll D Mol Ecol; 2016 Dec; 25(24):6124-6142. PubMed ID: 27859799 [TBL] [Abstract][Full Text] [Related]
14. Using Restriction Fragment Length Polymorphisms to Assess Temporal Variation and Estimate the Number of Ascospores that Initiate Epidemics in Field Populations of Mycosphaerella graminicola. Zhan J; Mundt CC; McDonald BA Phytopathology; 2001 Oct; 91(10):1011-7. PubMed ID: 18944129 [TBL] [Abstract][Full Text] [Related]
15. Correlation of cytological and biochemical parameters with resistance and tolerance to Mycosphaerella graminicola in wheat. El Chartouni L; Randoux B; Duyme F; Renard-Merlier D; Tisserant B; Bourdon N; Pillon V; Sanssené J; Durand R; Reignault P; Halama P Plant Biol (Stuttg); 2012 Mar; 14 Suppl 1():11-21. PubMed ID: 21973183 [TBL] [Abstract][Full Text] [Related]
16. Significant difference in pathogenicity between MAT1-1 and MAT1-2 isolates in the wheat pathogen Mycosphaerella graminicola. Zhan J; Torriani SF; McDonald BA Fungal Genet Biol; 2007 May; 44(5):339-46. PubMed ID: 17157539 [TBL] [Abstract][Full Text] [Related]
17. A novel substitution I381V in the sterol 14alpha-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides. Fraaije BA; Cools HJ; Kim SH; Motteram J; Clark WS; Lucas JA Mol Plant Pathol; 2007 May; 8(3):245-54. PubMed ID: 20507496 [TBL] [Abstract][Full Text] [Related]
18. Specificity of incomplete resistance to Mycosphaerella graminicola in wheat. Krenz JE; Sackett KE; Mundt CC Phytopathology; 2008 May; 98(5):555-61. PubMed ID: 18943223 [TBL] [Abstract][Full Text] [Related]
19. Frequency of sexual recombination by Mycosphaerella graminicola in mild and severe epidemics. Cowger C; Brunner PC; Mundt CC Phytopathology; 2008 Jul; 98(7):752-9. PubMed ID: 18943250 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the CYP51 gene and encoded protein in propiconazole-resistant isolates of Mycosphaerella fijiensis. Cañas-Gutiérrez GP; Angarita-Velásquez MJ; Restrepo-Flórez JM; Rodríguez P; Moreno CX; Arango R Pest Manag Sci; 2009 Aug; 65(8):892-9. PubMed ID: 19418481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]