BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 20507497)

  • 41. Silencing of phosphoinositide dependent protein kinase orthologs reduces hypersensitive cell death in
    Kiba A; Fukui K; Mitani M; Galis I; Hojo Y; Shinya T; Ohnishi K; Hikichi Y
    Plant Biotechnol (Tokyo); 2020 Sep; 37(3):363-367. PubMed ID: 33088202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Elucidating the role of highly homologous
    Zhou B; Zeng L
    Plant Methods; 2017; 13():59. PubMed ID: 28736574
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plastid methylerythritol phosphate pathway participates in the hypersensitive response-related cell death in
    Lee S; Jo SH; Hong CE; Lee J; Cha B; Park JM
    Front Plant Sci; 2022; 13():1032682. PubMed ID: 36388595
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Harpin, An Elicitor of the Hypersensitive Response in Tobacco Caused by Erwinia amylovora, Elicits Active Oxygen Production in Suspension Cells.
    Baker CJ; Orlandi EW; Mock NM
    Plant Physiol; 1993 Aug; 102(4):1341-1344. PubMed ID: 12231911
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Trigalactosyldiacylglycerol 3 protein orthologs are required for basal disease resistance in
    Tagami S; Ohnishi K; Hikichi Y; Kiba A
    Plant Biotechnol (Tokyo); 2021 Sep; 38(3):373-378. PubMed ID: 34782825
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ser360 and Ser364 in the Kinase Domain of Tomato SlMAPKKKα are Critical for Programmed Cell Death Associated with Plant Immunity.
    Hwang IS; Brady J; Martin GB; Oh CS
    Plant Pathol J; 2017 Apr; 33(2):163-169. PubMed ID: 28381963
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapid and Transient Activation of a Myelin Basic Protein Kinase in Tobacco Leaves Treated with Harpin from Erwinia amylovora.
    Adam AL; Pike S; Hoyos ME; Stone JM; Walker JC; Novacky A
    Plant Physiol; 1997 Oct; 115(2):853-861. PubMed ID: 12223848
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nicotiana benthamiana: Its History and Future as a Model for Plant-Pathogen Interactions.
    Goodin MM; Zaitlin D; Naidu RA; Lommel SA
    Mol Plant Microbe Interact; 2015 Jan; 2015(1):28-39. PubMed ID: 27839076
    [TBL] [Abstract][Full Text] [Related]  

  • 49.
    Zhang M; Feng H; Zhao Y; Song L; Gao C; Xu X; Huang L
    Front Microbiol; 2018; 9():821. PubMed ID: 29922244
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reversal of an immunity associated plant cell death program by the growth regulator auxin.
    Gopalan S
    BMC Res Notes; 2008 Dec; 1():126. PubMed ID: 19055721
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of a SAR8.2 gene in the susceptible host response of Nicotiana benthamiana to Colletotrichum orbiculare.
    Shan XC; Goodwin PH
    Funct Plant Biol; 2005 May; 32(3):259-266. PubMed ID: 32689129
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Retraction: 'Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana'.
    Brigneti G; Voinnet O; Li WX; Ji LH; Ding SW; Baulcombe DC
    EMBO J; 2015 Oct; 34(20):2595. PubMed ID: 26286615
    [No Abstract]   [Full Text] [Related]  

  • 53. Synergistic interaction between the type III secretion system of the endophytic bacterium Pantoea agglomerans DAPP-PG 734 and the virulence of the causal agent of olive knot Pseudomonas savastanoi pv. savastanoi DAPP-PG 722.
    Moretti C; Rezzonico F; Orfei B; Cortese C; Moreno-Pérez A; van den Burg HA; Onofri A; Firrao G; Ramos C; Smits THM; Buonaurio R
    Mol Plant Pathol; 2021 Oct; 22(10):1209-1225. PubMed ID: 34268839
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-wide identification of the Sec-dependent secretory protease genes in Erwinia amylovora and analysis of their expression during infection of immature pear fruit.
    Zhang WB; Yan HL; Zhu ZC; Zhang C; Du PX; Zhao WJ; Li WM
    J Zhejiang Univ Sci B; 2020 Sept.; 21(9):716-726. PubMed ID: 32893528
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system.
    Pompili V; Dalla Costa L; Piazza S; Pindo M; Malnoy M
    Plant Biotechnol J; 2020 Mar; 18(3):845-858. PubMed ID: 31495052
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Signalling requirements for Erwinia amylovora-induced disease resistance, callose deposition and cell growth in the non-host Arabidopsis thaliana.
    Hamdoun S; Gao M; Gill M; Kwon A; Norelli JL; Lu H
    Mol Plant Pathol; 2018 May; 19(5):1090-1103. PubMed ID: 28756640
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DspA/E Contributes to Apoplastic Accumulation of ROS in Non-host A. thaliana.
    Launay A; Patrit O; Wénès E; Fagard M
    Front Plant Sci; 2016; 7():545. PubMed ID: 27200021
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The olive knot disease as a model to study the role of interspecies bacterial communities in plant disease.
    Buonaurio R; Moretti C; da Silva DP; Cortese C; Ramos C; Venturi V
    Front Plant Sci; 2015; 6():434. PubMed ID: 26113855
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The AvrE superfamily: ancestral type III effectors involved in suppression of pathogen-associated molecular pattern-triggered immunity.
    Degrave A; Siamer S; Boureau T; Barny MA
    Mol Plant Pathol; 2015 Oct; 16(8):899-905. PubMed ID: 25640649
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Perturbation of maize phenylpropanoid metabolism by an AvrE family type III effector from Pantoea stewartii.
    Asselin JE; Lin J; Perez-Quintero AL; Gentzel I; Majerczak D; Opiyo SO; Zhao W; Paek SM; Kim MG; Coplin DL; Blakeslee JJ; Mackey D
    Plant Physiol; 2015 Mar; 167(3):1117-35. PubMed ID: 25635112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.