These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 20507525)

  • 1. An activating mutation of the Sclerotinia sclerotiorum pac1 gene increases oxalic acid production at low pH but decreases virulence.
    Kim YT; Prusky D; Rollins JA
    Mol Plant Pathol; 2007 Sep; 8(5):611-22. PubMed ID: 20507525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence.
    Rollins JA
    Mol Plant Microbe Interact; 2003 Sep; 16(9):785-95. PubMed ID: 12971602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog.
    Rollins JA; Dickman MB
    Appl Environ Microbiol; 2001 Jan; 67(1):75-81. PubMed ID: 11133430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH and Pac1 control development and antifungal activity in Trichoderma harzianum.
    Moreno-Mateos MA; Delgado-Jarana J; Codón AC; Benítez T
    Fungal Genet Biol; 2007 Dec; 44(12):1355-67. PubMed ID: 17881256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambient pH controls the expression of endopolygalacturonase genes in the necrotrophic fungus Sclerotinia sclerotiorum.
    Cotton P; Kasza Z; Bruel C; Rascle C; Fèvre M
    FEMS Microbiol Lett; 2003 Oct; 227(2):163-9. PubMed ID: 14592704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxaloacetate acetylhydrolase gene mutants of Sclerotinia sclerotiorum do not accumulate oxalic acid, but do produce limited lesions on host plants.
    Liang X; Liberti D; Li M; Kim YT; Hutchens A; Wilson R; Rollins JA
    Mol Plant Pathol; 2015 Aug; 16(6):559-71. PubMed ID: 25285668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a common toolbox based on necrotrophy in a fungal lineage spanning necrotrophs, biotrophs, endophytes, host generalists and specialists.
    Andrew M; Barua R; Short SM; Kohn LM
    PLoS One; 2012; 7(1):e29943. PubMed ID: 22253834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sclerotinia sclerotiorum: An Evaluation of Virulence Theories.
    Xu L; Li G; Jiang D; Chen W
    Annu Rev Phytopathol; 2018 Aug; 56():311-338. PubMed ID: 29958073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum.
    Merhej J; Richard-Forget F; Barreau C
    Fungal Genet Biol; 2011 Mar; 48(3):275-84. PubMed ID: 21126599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Aspergillus pH-responsive transcription factor PacC regulates virulence.
    Bignell E; Negrete-Urtasun S; Calcagno AM; Haynes K; Arst HN; Rogers T
    Mol Microbiol; 2005 Feb; 55(4):1072-84. PubMed ID: 15686555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalate-minus mutants of Sclerotinia sclerotiorum.
    Xu L; Xiang M; White D; Chen W
    Environ Microbiol; 2015 Aug; 17(8):2896-909. PubMed ID: 25720941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing.
    Chen C; Harel A; Gorovoits R; Yarden O; Dickman MB
    Mol Plant Microbe Interact; 2004 Apr; 17(4):404-13. PubMed ID: 15077673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH Regulation of ammonia secretion by Colletotrichum gloeosporioides and its effect on appressorium formation and pathogenicity.
    Miyara I; Shafran H; Davidzon M; Sherman A; Prusky D
    Mol Plant Microbe Interact; 2010 Mar; 23(3):304-16. PubMed ID: 20121452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-factor regulation of pectate lyase secretion by Colletotrichum gloeosporioides pathogenic on avocado fruits.
    Miyara I; Shafran H; Kramer Haimovich H; Rollins J; Sherman A; Prusky D
    Mol Plant Pathol; 2008 May; 9(3):281-91. PubMed ID: 18705870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon and pH modulate the expression of the fungal glucose repressor encoding genes.
    Vautard-Mey G; Fèvre M
    Curr Microbiol; 2003 Feb; 46(2):146-50. PubMed ID: 12520371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling.
    Guo X; Stotz HU
    Mol Plant Microbe Interact; 2007 Nov; 20(11):1384-95. PubMed ID: 17977150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the Aspergillus PacC zinc finger transcription factor requires two proteolytic steps.
    Díez E; Alvaro J; Espeso EA; Rainbow L; Suárez T; Tilburn J; Arst HN; Peñalva MA
    EMBO J; 2002 Mar; 21(6):1350-9. PubMed ID: 11889040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development.
    Kim KS; Min JY; Dickman MB
    Mol Plant Microbe Interact; 2008 May; 21(5):605-12. PubMed ID: 18393620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea.
    Manteau S; Abouna S; Lambert B; Legendre L
    FEMS Microbiol Ecol; 2003 Apr; 43(3):359-66. PubMed ID: 19719667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships among endo-polygalacturonase, oxalate, pH, and plant polygalacturonase-inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean.
    Favaron F; Sella L; D'Ovidio R
    Mol Plant Microbe Interact; 2004 Dec; 17(12):1402-9. PubMed ID: 15597746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.