These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 20507583)
1. Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression. Shi Z; Derow CK; Zhang B BMC Syst Biol; 2010 May; 4():74. PubMed ID: 20507583 [TBL] [Abstract][Full Text] [Related]
2. Gene co-expression modules as clinically relevant hallmarks of breast cancer diversity. Wolf DM; Lenburg ME; Yau C; Boudreau A; van 't Veer LJ PLoS One; 2014; 9(2):e88309. PubMed ID: 24516633 [TBL] [Abstract][Full Text] [Related]
3. FGMD: A novel approach for functional gene module detection in cancer. Jin D; Lee H PLoS One; 2017; 12(12):e0188900. PubMed ID: 29244808 [TBL] [Abstract][Full Text] [Related]
4. Identification of breast cancer prognostic modules via differential module selection based on weighted gene Co-expression network analysis. Guo L; Mao L; Lu W; Yang J Biosystems; 2021 Jan; 199():104317. PubMed ID: 33279569 [TBL] [Abstract][Full Text] [Related]
5. Weighted gene co-expression network analysis reveals modules and hub genes associated with the development of breast cancer. Qiu J; Du Z; Wang Y; Zhou Y; Zhang Y; Xie Y; Lv Q Medicine (Baltimore); 2019 Feb; 98(6):e14345. PubMed ID: 30732163 [TBL] [Abstract][Full Text] [Related]
6. A modular analysis of breast cancer reveals a novel low-grade molecular signature in estrogen receptor-positive tumors. Yu K; Ganesan K; Miller LD; Tan P Clin Cancer Res; 2006 Jun; 12(11 Pt 1):3288-96. PubMed ID: 16740749 [TBL] [Abstract][Full Text] [Related]
7. An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer. Xu M; Kao MC; Nunez-Iglesias J; Nevins JR; West M; Zhou XJ BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S12. PubMed ID: 18366601 [TBL] [Abstract][Full Text] [Related]
8. The gene expression landscape of breast cancer is shaped by tumor protein p53 status and epithelial-mesenchymal transition. Fredlund E; Staaf J; Rantala JK; Kallioniemi O; Borg A; Ringnér M Breast Cancer Res; 2012 Jul; 14(4):R113. PubMed ID: 22839103 [TBL] [Abstract][Full Text] [Related]
9. NRF1 motif sequence-enriched genes involved in ER/PR -ve HER2 +ve breast cancer signaling pathways. Ramos J; Das J; Felty Q; Yoo C; Poppiti R; Murrell D; Foster PJ; Roy D Breast Cancer Res Treat; 2018 Nov; 172(2):469-485. PubMed ID: 30128822 [TBL] [Abstract][Full Text] [Related]
10. Denoising perturbation signatures reveal an actionable AKT-signaling gene module underlying a poor clinical outcome in endocrine-treated ER+ breast cancer. Teschendorff AE; Li L; Yang Z Genome Biol; 2015 Apr; 16(1):61. PubMed ID: 25886003 [TBL] [Abstract][Full Text] [Related]
11. Correlating transcriptional networks with pathological complete response following neoadjuvant chemotherapy for breast cancer. Liu R; Lv QL; Yu J; Hu L; Zhang LH; Cheng Y; Zhou HH Breast Cancer Res Treat; 2015 Jun; 151(3):607-18. PubMed ID: 25981901 [TBL] [Abstract][Full Text] [Related]
12. Identification of co-expression modules and potential biomarkers of breast cancer by WGCNA. Jia R; Zhao H; Jia M Gene; 2020 Aug; 750():144757. PubMed ID: 32387385 [TBL] [Abstract][Full Text] [Related]
13. Gene set-based module discovery in the breast cancer transcriptome. Niida A; Smith AD; Imoto S; Aburatani H; Zhang MQ; Akiyama T BMC Bioinformatics; 2009 Feb; 10():71. PubMed ID: 19243633 [TBL] [Abstract][Full Text] [Related]
14. Comparisons of gene coexpression network modules in breast cancer and ovarian cancer. Zhang S BMC Syst Biol; 2018 Apr; 12(Suppl 1):8. PubMed ID: 29671401 [TBL] [Abstract][Full Text] [Related]
15. Co-expression modules identified from published immune signatures reveal five distinct immune subtypes in breast cancer. Amara D; Wolf DM; van 't Veer L; Esserman L; Campbell M; Yau C Breast Cancer Res Treat; 2017 Jan; 161(1):41-50. PubMed ID: 27815749 [TBL] [Abstract][Full Text] [Related]
16. Identification of key gene modules and pathways of human breast cancer by co-expression analysis. Zhao Q; Song W; He DY; Li Y Breast Cancer; 2018 Mar; 25(2):213-223. PubMed ID: 29170883 [TBL] [Abstract][Full Text] [Related]
17. Motif-guided sparse decomposition of gene expression data for regulatory module identification. Gong T; Xuan J; Chen L; Riggins RB; Li H; Hoffman EP; Clarke R; Wang Y BMC Bioinformatics; 2011 Mar; 12():82. PubMed ID: 21426557 [TBL] [Abstract][Full Text] [Related]
18. MicroRNA co-expression patterns unravel the relevance of extra cellular matrix and immunity in breast cancer. Dugo M; Huang X; Iorio MV; Cataldo A; Tagliabue E; Daidone MG; Wu J; Orlandi R Breast; 2018 Jun; 39():46-52. PubMed ID: 29597130 [TBL] [Abstract][Full Text] [Related]
19. Incorporating motif analysis into gene co-expression networks reveals novel modular expression pattern and new signaling pathways. Ma S; Shah S; Bohnert HJ; Snyder M; Dinesh-Kumar SP PLoS Genet; 2013; 9(10):e1003840. PubMed ID: 24098147 [TBL] [Abstract][Full Text] [Related]
20. Identifying grade/stage-related active modules in human co-regulatory networks: a case study for breast cancer. Feng C; Chen L; Li W; Wang H; Zhang L; Jia X; Miao Z; Qu X; Li W; He W OMICS; 2012 Dec; 16(12):681-9. PubMed ID: 23215806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]