BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 20507583)

  • 1. Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression.
    Shi Z; Derow CK; Zhang B
    BMC Syst Biol; 2010 May; 4():74. PubMed ID: 20507583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene co-expression modules as clinically relevant hallmarks of breast cancer diversity.
    Wolf DM; Lenburg ME; Yau C; Boudreau A; van 't Veer LJ
    PLoS One; 2014; 9(2):e88309. PubMed ID: 24516633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FGMD: A novel approach for functional gene module detection in cancer.
    Jin D; Lee H
    PLoS One; 2017; 12(12):e0188900. PubMed ID: 29244808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of breast cancer prognostic modules via differential module selection based on weighted gene Co-expression network analysis.
    Guo L; Mao L; Lu W; Yang J
    Biosystems; 2021 Jan; 199():104317. PubMed ID: 33279569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weighted gene co-expression network analysis reveals modules and hub genes associated with the development of breast cancer.
    Qiu J; Du Z; Wang Y; Zhou Y; Zhang Y; Xie Y; Lv Q
    Medicine (Baltimore); 2019 Feb; 98(6):e14345. PubMed ID: 30732163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modular analysis of breast cancer reveals a novel low-grade molecular signature in estrogen receptor-positive tumors.
    Yu K; Ganesan K; Miller LD; Tan P
    Clin Cancer Res; 2006 Jun; 12(11 Pt 1):3288-96. PubMed ID: 16740749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer.
    Xu M; Kao MC; Nunez-Iglesias J; Nevins JR; West M; Zhou XJ
    BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S12. PubMed ID: 18366601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The gene expression landscape of breast cancer is shaped by tumor protein p53 status and epithelial-mesenchymal transition.
    Fredlund E; Staaf J; Rantala JK; Kallioniemi O; Borg A; Ringnér M
    Breast Cancer Res; 2012 Jul; 14(4):R113. PubMed ID: 22839103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NRF1 motif sequence-enriched genes involved in ER/PR -ve HER2 +ve breast cancer signaling pathways.
    Ramos J; Das J; Felty Q; Yoo C; Poppiti R; Murrell D; Foster PJ; Roy D
    Breast Cancer Res Treat; 2018 Nov; 172(2):469-485. PubMed ID: 30128822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denoising perturbation signatures reveal an actionable AKT-signaling gene module underlying a poor clinical outcome in endocrine-treated ER+ breast cancer.
    Teschendorff AE; Li L; Yang Z
    Genome Biol; 2015 Apr; 16(1):61. PubMed ID: 25886003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlating transcriptional networks with pathological complete response following neoadjuvant chemotherapy for breast cancer.
    Liu R; Lv QL; Yu J; Hu L; Zhang LH; Cheng Y; Zhou HH
    Breast Cancer Res Treat; 2015 Jun; 151(3):607-18. PubMed ID: 25981901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of co-expression modules and potential biomarkers of breast cancer by WGCNA.
    Jia R; Zhao H; Jia M
    Gene; 2020 Aug; 750():144757. PubMed ID: 32387385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene set-based module discovery in the breast cancer transcriptome.
    Niida A; Smith AD; Imoto S; Aburatani H; Zhang MQ; Akiyama T
    BMC Bioinformatics; 2009 Feb; 10():71. PubMed ID: 19243633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparisons of gene coexpression network modules in breast cancer and ovarian cancer.
    Zhang S
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):8. PubMed ID: 29671401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-expression modules identified from published immune signatures reveal five distinct immune subtypes in breast cancer.
    Amara D; Wolf DM; van 't Veer L; Esserman L; Campbell M; Yau C
    Breast Cancer Res Treat; 2017 Jan; 161(1):41-50. PubMed ID: 27815749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of key gene modules and pathways of human breast cancer by co-expression analysis.
    Zhao Q; Song W; He DY; Li Y
    Breast Cancer; 2018 Mar; 25(2):213-223. PubMed ID: 29170883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motif-guided sparse decomposition of gene expression data for regulatory module identification.
    Gong T; Xuan J; Chen L; Riggins RB; Li H; Hoffman EP; Clarke R; Wang Y
    BMC Bioinformatics; 2011 Mar; 12():82. PubMed ID: 21426557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA co-expression patterns unravel the relevance of extra cellular matrix and immunity in breast cancer.
    Dugo M; Huang X; Iorio MV; Cataldo A; Tagliabue E; Daidone MG; Wu J; Orlandi R
    Breast; 2018 Jun; 39():46-52. PubMed ID: 29597130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating motif analysis into gene co-expression networks reveals novel modular expression pattern and new signaling pathways.
    Ma S; Shah S; Bohnert HJ; Snyder M; Dinesh-Kumar SP
    PLoS Genet; 2013; 9(10):e1003840. PubMed ID: 24098147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying grade/stage-related active modules in human co-regulatory networks: a case study for breast cancer.
    Feng C; Chen L; Li W; Wang H; Zhang L; Jia X; Miao Z; Qu X; Li W; He W
    OMICS; 2012 Dec; 16(12):681-9. PubMed ID: 23215806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.