These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
670 related articles for article (PubMed ID: 20507633)
21. Identification and analysis of the stigma and embryo sac-preferential/specific genes in rice pistils. Yu L; Ma T; Zhang Y; Hu Y; Yu K; Chen Y; Ma H; Zhao J BMC Plant Biol; 2017 Mar; 17(1):60. PubMed ID: 28270108 [TBL] [Abstract][Full Text] [Related]
22. GORI, encoding the WD40 domain protein, is required for pollen tube germination and elongation in rice. Kim YJ; Kim MH; Hong WJ; Moon S; Kim EJ; Silva J; Lee J; Lee S; Kim ST; Park SK; Jung KH Plant J; 2021 Mar; 105(6):1645-1664. PubMed ID: 33345419 [TBL] [Abstract][Full Text] [Related]
23. Application of rice microspore-preferred promoters to manipulate early pollen development in Arabidopsis: a heterologous system. Nguyen TD; Moon S; Oo MM; Tayade R; Soh MS; Song JT; Oh SA; Jung KH; Park SK Plant Reprod; 2016 Dec; 29(4):291-300. PubMed ID: 27796586 [TBL] [Abstract][Full Text] [Related]
24. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Wei LQ; Yan LF; Wang T Genome Biol; 2011 Jun; 12(6):R53. PubMed ID: 21679406 [TBL] [Abstract][Full Text] [Related]
25. Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice. Sato Y; Antonio B; Namiki N; Motoyama R; Sugimoto K; Takehisa H; Minami H; Kamatsuki K; Kusaba M; Hirochika H; Nagamura Y BMC Plant Biol; 2011 Jan; 11():10. PubMed ID: 21226959 [TBL] [Abstract][Full Text] [Related]
26. OsACOS12, an orthologue of Arabidopsis acyl-CoA synthetase5, plays an important role in pollen exine formation and anther development in rice. Li Y; Li D; Guo Z; Shi Q; Xiong S; Zhang C; Zhu J; Yang Z BMC Plant Biol; 2016 Nov; 16(1):256. PubMed ID: 27871243 [TBL] [Abstract][Full Text] [Related]
28. Comparative cytological and transcriptomic analysis of pollen development in autotetraploid and diploid rice. Wu J; Shahid MQ; Guo H; Yin W; Chen Z; Wang L; Liu X; Lu Y Plant Reprod; 2014 Dec; 27(4):181-96. PubMed ID: 25262386 [TBL] [Abstract][Full Text] [Related]
29. A wave of specific transcript and protein accumulation accompanies pollen dehydration. Sze H; Klodová B; Ward JM; Harper JF; Palanivelu R; Johnson MA; Honys D Plant Physiol; 2024 Jun; 195(3):1775-1795. PubMed ID: 38530638 [TBL] [Abstract][Full Text] [Related]
30. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Wang Y; Zhang WZ; Song LF; Zou JJ; Su Z; Wu WH Plant Physiol; 2008 Nov; 148(3):1201-11. PubMed ID: 18775970 [TBL] [Abstract][Full Text] [Related]
31. Comparative proteomic analysis reveals a dynamic pollen plasma membrane protein map and the membrane landscape of receptor-like kinases and transporters important for pollen tube growth and interaction with pistils in rice. Yang N; Wang T BMC Plant Biol; 2017 Jan; 17(1):2. PubMed ID: 28056797 [TBL] [Abstract][Full Text] [Related]
32. AtNOT1 Is a Novel Regulator of Gene Expression during Pollen Development. Motomura K; Arae T; Araki-Uramoto H; Suzuki Y; Takeuchi H; Suzuki T; Ichihashi Y; Shibata A; Shirasu K; Takeda A; Higashiyama T; Chiba Y Plant Cell Physiol; 2020 Apr; 61(4):712-721. PubMed ID: 31879778 [TBL] [Abstract][Full Text] [Related]
33. Cytological and transcriptome analyses reveal OsPUB73 defect affects the gene expression associated with tapetum or pollen exine abnormality in rice. Chen L; Deng R; Liu G; Jin J; Wu J; Liu X BMC Plant Biol; 2019 Dec; 19(1):546. PubMed ID: 31823718 [TBL] [Abstract][Full Text] [Related]
34. Transcriptomic and Proteomic Insights into Flores-Tornero M; Vogler F; Mutwil M; Potěšil D; Ihnatová I; Zdráhal Z; Sprunck S; Dresselhaus T Plant Physiol; 2020 Dec; 184(4):1640-1657. PubMed ID: 32989009 [TBL] [Abstract][Full Text] [Related]
35. Collapsed abnormal pollen1 gene encoding the Arabinokinase-like protein is involved in pollen development in rice. Ueda K; Yoshimura F; Miyao A; Hirochika H; Nonomura K; Wabiko H Plant Physiol; 2013 Jun; 162(2):858-71. PubMed ID: 23629836 [TBL] [Abstract][Full Text] [Related]
36. Transcriptional trajectories of anther development provide candidates for engineering male fertility in sorghum. Dhaka N; Krishnan K; Kandpal M; Vashisht I; Pal M; Sharma MK; Sharma R Sci Rep; 2020 Jan; 10(1):897. PubMed ID: 31964983 [TBL] [Abstract][Full Text] [Related]
37. Analysis of gene expression in early seed germination of rice: landscape and genetic regulation. Li H; Li X; Wang G; Zhang J; Wang G BMC Plant Biol; 2022 Feb; 22(1):70. PubMed ID: 35176996 [TBL] [Abstract][Full Text] [Related]
38. Genetic and Biochemical Mechanisms of Pollen Wall Development. Shi J; Cui M; Yang L; Kim YJ; Zhang D Trends Plant Sci; 2015 Nov; 20(11):741-753. PubMed ID: 26442683 [TBL] [Abstract][Full Text] [Related]
39. Pollen germination is impaired by disruption of a Shaker K Yang F; Wang T; Liu L J Plant Physiol; 2020 May; 248():153140. PubMed ID: 32114250 [TBL] [Abstract][Full Text] [Related]
40. Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice. Li X; Shahid MQ; Xia J; Lu Z; Fang N; Wang L; Wu J; Chen Z; Liu X BMC Genomics; 2017 Feb; 18(1):129. PubMed ID: 28166742 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]