These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1178 related articles for article (PubMed ID: 20507711)
1. PEG- and PDMAEG-graft-modified branched PEI as novel gene vector: synthesis, characterization and gene transfection. Wen Y; Pan S; Luo X; Zhang W; Shen Y; Feng M J Biomater Sci Polym Ed; 2010; 21(8-9):1103-26. PubMed ID: 20507711 [TBL] [Abstract][Full Text] [Related]
2. Low molecular weight linear polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties. Zhong Z; Feijen J; Lok MC; Hennink WE; Christensen LV; Yockman JW; Kim YH; Kim SW Biomacromolecules; 2005; 6(6):3440-8. PubMed ID: 16283777 [TBL] [Abstract][Full Text] [Related]
3. PEGylated PEI-based biodegradable polymers as non-viral gene vectors. Huang FW; Wang HY; Li C; Wang HF; Sun YX; Feng J; Zhang XZ; Zhuo RX Acta Biomater; 2010 Nov; 6(11):4285-95. PubMed ID: 20601231 [TBL] [Abstract][Full Text] [Related]
4. A biodegradable low molecular weight polyethylenimine derivative as low toxicity and efficient gene vector. Wen Y; Pan S; Luo X; Zhang X; Zhang W; Feng M Bioconjug Chem; 2009 Feb; 20(2):322-32. PubMed ID: 19152330 [TBL] [Abstract][Full Text] [Related]
5. Poly(ethylene oxide) grafted with short polyethylenimine gives DNA polyplexes with superior colloidal stability, low cytotoxicity, and potent in vitro gene transfection under serum conditions. Zheng M; Zhong Z; Zhou L; Meng F; Peng R; Zhong Z Biomacromolecules; 2012 Mar; 13(3):881-8. PubMed ID: 22339316 [TBL] [Abstract][Full Text] [Related]
6. Galactosylated poly(ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting. Jiang HL; Kwon JT; Kim EM; Kim YK; Arote R; Jere D; Jeong HJ; Jang MK; Nah JW; Xu CX; Park IK; Cho MH; Cho CS J Control Release; 2008 Oct; 131(2):150-7. PubMed ID: 18706946 [TBL] [Abstract][Full Text] [Related]
7. Biodegradable cationic PEG-PEI-PBLG hyperbranched block copolymer: synthesis and micelle characterization. Tian HY; Deng C; Lin H; Sun J; Deng M; Chen X; Jing X Biomaterials; 2005 Jul; 26(20):4209-17. PubMed ID: 15683643 [TBL] [Abstract][Full Text] [Related]
8. Poly(ethylene glycol)-block-polyethylenimine copolymers as carriers for gene delivery: effects of PEG molecular weight and PEGylation degree. Zhang X; Pan SR; Hu HM; Wu GF; Feng M; Zhang W; Luo X J Biomed Mater Res A; 2008 Mar; 84(3):795-804. PubMed ID: 17635020 [TBL] [Abstract][Full Text] [Related]
9. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. Park MR; Han KO; Han IK; Cho MH; Nah JW; Choi YJ; Cho CS J Control Release; 2005 Jul; 105(3):367-80. PubMed ID: 15936108 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of a new potential biodegradable disulfide containing poly(ethylene imine)-poly(ethylene glycol) copolymer cross-linked with click cluster for gene delivery. Zhao N; Roesler S; Kissel T Int J Pharm; 2011 Jun; 411(1-2):197-205. PubMed ID: 21439364 [TBL] [Abstract][Full Text] [Related]
11. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Mao S; Neu M; Germershaus O; Merkel O; Sitterberg J; Bakowsky U; Kissel T Bioconjug Chem; 2006; 17(5):1209-18. PubMed ID: 16984130 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and characterization of a sterically stabilized polyelectrolyte using isophorone diisocyanate as the coupling reagent. Shen Y; Deng J; Luo X; Zhang X; Zeng X; Feng M; Pan S J Biomater Sci Polym Ed; 2009; 20(9):1217-33. PubMed ID: 19520009 [TBL] [Abstract][Full Text] [Related]
13. Brush-shaped polycation with poly(ethylenimine)-b-poly(ethylene glycol) side chains as highly efficient gene delivery vector. Liu XQ; Du JZ; Zhang CP; Zhao F; Yang XZ; Wang J Int J Pharm; 2010 Jun; 392(1-2):118-26. PubMed ID: 20347026 [TBL] [Abstract][Full Text] [Related]
14. Synergistic effect of low cytotoxic linear polyethylenimine and multiarm polyethylene glycol: study of physicochemical properties and in vitro gene transfection. Namgung R; Kim J; Singha K; Kim CH; Kim WJ Mol Pharm; 2009; 6(6):1826-35. PubMed ID: 19791796 [TBL] [Abstract][Full Text] [Related]
16. Bioreversibly crosslinked polyplexes of PEI and high molecular weight PEG show extended circulation times in vivo. Neu M; Germershaus O; Behe M; Kissel T J Control Release; 2007 Dec; 124(1-2):69-80. PubMed ID: 17897749 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable poly(ester amine) based on glycerol dimethacrylate and polyethylenimine as a gene carrier. Arote RB; Hwang SK; Yoo MK; Jere D; Jiang HL; Kim YK; Choi YJ; Nah JW; Cho MH; Cho CS J Gene Med; 2008 Nov; 10(11):1223-35. PubMed ID: 18773499 [TBL] [Abstract][Full Text] [Related]
18. Cationic star polymers consisting of alpha-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors. Yang C; Li H; Goh SH; Li J Biomaterials; 2007 Jul; 28(21):3245-54. PubMed ID: 17466370 [TBL] [Abstract][Full Text] [Related]
19. Delivery of messenger RNA using poly(ethylene imine)-poly(ethylene glycol)-copolymer blends for polyplex formation: biophysical characterization and in vitro transfection properties. Debus H; Baumhof P; Probst J; Kissel T J Control Release; 2010 Dec; 148(3):334-43. PubMed ID: 20854856 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery. Liang B; He ML; Xiao ZP; Li Y; Chan CY; Kung HF; Shuai XT; Peng Y Biochem Biophys Res Commun; 2008 Mar; 367(4):874-80. PubMed ID: 18201560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]