BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 20508315)

  • 1. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy.
    Wu W; Hu M; Ou FS; Li Z; Williams RS
    Nanotechnology; 2010 Jun; 21(25):255502. PubMed ID: 20508315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold-coated nanorod arrays as highly sensitive substrates for surface-enhanced raman spectroscopy.
    Fan JG; Zhao YP
    Langmuir; 2008 Dec; 24(24):14172-5. PubMed ID: 19053654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV-Nanoimprint Lithography for Predefined SERS Nanopatterns Which Are Reproducible at Low Cost and High Throughput.
    Milenko K; Dullo FT; Thrane PCV; Skokic Z; Dirdal CA
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing.
    Abu Hatab NA; Oran JM; Sepaniak MJ
    ACS Nano; 2008 Feb; 2(2):377-85. PubMed ID: 19206640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of a multiwell array SERS chip with biological applications.
    Abell JL; Driskell JD; Dluhy RA; Tripp RA; Zhao YP
    Biosens Bioelectron; 2009 Aug; 24(12):3663-70. PubMed ID: 19556119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate.
    Zhang C; Yi P; Peng L; Lai X; Chen J; Huang M; Ni J
    Sci Rep; 2017 Jan; 7():39814. PubMed ID: 28051175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates.
    Wang H; Levin CS; Halas NJ
    J Am Chem Soc; 2005 Nov; 127(43):14992-3. PubMed ID: 16248615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy.
    Cui B; Clime L; Li K; Veres T
    Nanotechnology; 2008 Apr; 19(14):145302. PubMed ID: 21817756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inherently reproducible fabrication of plasmonic nanoparticle arrays for SERS by combining nanoimprint and copolymer lithography.
    Krishnamoorthy S; Krishnan S; Thoniyot P; Low HY
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1033-40. PubMed ID: 21375254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D ordered nanostructures fabricated by nanosphere lithography using an organometallic etch mask.
    Ling XY; Acikgoz C; Phang IY; Hempenius MA; Reinhoudt DN; Vancso GJ; Huskens J
    Nanoscale; 2010 Aug; 2(8):1455-60. PubMed ID: 20820734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays.
    Yu Q; Braswell S; Christin B; Xu J; Wallace PM; Gong H; Kaminsky D
    Nanotechnology; 2010 Sep; 21(35):355301. PubMed ID: 20683142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering.
    Yang X; Ileri N; Larson CC; Carlson TC; Britten JA; Chang AS; Gu C; Bond TC
    Opt Express; 2012 Oct; 20(22):24819-26. PubMed ID: 23187247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability.
    Fan M; Brolo AG
    Chemphyschem; 2008 Sep; 9(13):1899-907. PubMed ID: 18704901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M; Brolo AG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces.
    Williamson TL; Guo X; Zukoski A; Sood A; Díaz DJ; Bohn PW
    J Phys Chem B; 2005 Nov; 109(43):20186-91. PubMed ID: 16853609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-Scale Plasmonic nanoCones Array For Spectroscopy Detection.
    Das G; Battista E; Manzo G; Causa F; Netti PA; Di Fabrizio E
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23597-604. PubMed ID: 26399550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of Langmuir-Blodgett phospholipidic films deposited on surface enhanced Raman scattering active gold nanoparticle monolayers.
    Bernard S; Felidj N; Truong S; Peretti P; Lévi G; Aubard J
    Biopolymers; 2002; 67(4-5):314-8. PubMed ID: 12012456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy.
    Wells SM; Retterer SD; Oran JM; Sepaniak MJ
    ACS Nano; 2009 Dec; 3(12):3845-53. PubMed ID: 19911835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanofabrication of densely packed metal-polymer arrays for surface-enhanced Raman spectrometry.
    De Jesús MA; Giesfeldt KS; Oran JM; Abu-Hatab NA; Lavrik NV; Sepaniak MJ
    Appl Spectrosc; 2005 Dec; 59(12):1501-8. PubMed ID: 16390590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale patterning by UV nanoimprint lithography using an organometallic resist.
    Acikgoz C; Vratzov B; Hempenius MA; Vancso GJ; Huskens J
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2645-50. PubMed ID: 20356138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.