BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 20508546)

  • 21. Bicuculline methiodide potentiates NMDA-dependent burst firing in rat dopamine neurons by blocking apamin-sensitive Ca2+-activated K+ currents.
    Johnson SW; Seutin V
    Neurosci Lett; 1997 Aug; 231(1):13-6. PubMed ID: 9280156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The noradrenergic inhibition of an apamin-sensitive, small-conductance Ca2+-activated K+ channel in hypothalamic gamma-aminobutyric acid neurons: pharmacology, estrogen sensitivity, and relevance to the control of the reproductive axis.
    Wagner EJ; Rønnekleiv OK; Kelly MJ
    J Pharmacol Exp Ther; 2001 Oct; 299(1):21-30. PubMed ID: 11561059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons.
    Kimm T; Khaliq ZM; Bean BP
    J Neurosci; 2015 Dec; 35(50):16404-17. PubMed ID: 26674866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of M-current in ventral tegmental area dopamine neurons.
    Koyama S; Appel SB
    J Neurophysiol; 2006 Aug; 96(2):535-43. PubMed ID: 16394077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ca2+ release-dependent hyperpolarizations modulate the firing pattern of juvenile GABA neurons in mouse substantia nigra pars reticulata in vitro.
    Yanovsky Y; Velte S; Misgeld U
    J Physiol; 2006 Dec; 577(Pt 3):879-90. PubMed ID: 17053035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of firing activity by ATP in dopamine neurons of the rat substantia nigra pars compacta.
    Choi YM; Jang JY; Jang M; Kim SH; Kang YK; Cho H; Chung S; Park MK
    Neuroscience; 2009 May; 160(3):587-95. PubMed ID: 19272429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computer simulation for studying calcium dependent abnormalities in firing mechanism of molluscan neurones.
    Pongrácz F; Szente M
    Acta Physiol Acad Sci Hung; 1982; 60(4):189-203. PubMed ID: 6314740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons.
    Putzier I; Kullmann PH; Horn JP; Levitan ES
    J Neurosci; 2009 Dec; 29(49):15414-9. PubMed ID: 20007466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subtypes of substantia nigra dopaminergic neurons revealed by apamin: autoradiographic and electrophysiological studies.
    Gu X; Blatz AL; German DC
    Brain Res Bull; 1992 Mar; 28(3):435-40. PubMed ID: 1350500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuning the excitability of midbrain dopamine neurons by modulating the Ca2+ sensitivity of SK channels.
    Ji H; Hougaard C; Herrik KF; Strøbaek D; Christophersen P; Shepard PD
    Eur J Neurosci; 2009 May; 29(9):1883-95. PubMed ID: 19473240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca(2+)-activated K+ conductance.
    Shepard PD; Bunney BS
    Exp Brain Res; 1991; 86(1):141-50. PubMed ID: 1756785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons.
    Wolfart J; Neuhoff H; Franz O; Roeper J
    J Neurosci; 2001 May; 21(10):3443-56. PubMed ID: 11331374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Apamin-induced irregular firing in vitro and irregular single-spike firing observed in vivo in dopamine neurons is chaotic.
    Lovejoy LP; Shepard PD; Canavier CC
    Neuroscience; 2001; 104(3):829-40. PubMed ID: 11440813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron.
    Kuznetsova AY; Huertas MA; Kuznetsov AS; Paladini CA; Canavier CC
    J Comput Neurosci; 2010 Jun; 28(3):389-403. PubMed ID: 20217204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spike frequency adaptation is developmentally regulated in substantia nigra pars compacta dopaminergic neurons.
    Vandecasteele M; Deniau JM; Venance L
    Neuroscience; 2011 Sep; 192():1-10. PubMed ID: 21767612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: implications for modulation of neuronal activity.
    Canavier CC; Oprisan SA; Callaway JC; Ji H; Shepard PD
    J Neurophysiol; 2007 Nov; 98(5):3006-22. PubMed ID: 17699694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acute effects of 6-hydroxydopamine on dopaminergic neurons of the rat substantia nigra pars compacta in vitro.
    Berretta N; Freestone PS; Guatteo E; de Castro D; Geracitano R; Bernardi G; Mercuri NB; Lipski J
    Neurotoxicology; 2005 Oct; 26(5):869-81. PubMed ID: 15890406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential Somatic Ca2+ Channel Profile in Midbrain Dopaminergic Neurons.
    Philippart F; Destreel G; Merino-Sepúlveda P; Henny P; Engel D; Seutin V
    J Neurosci; 2016 Jul; 36(27):7234-45. PubMed ID: 27383597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of dihydropyridine calcium antagonists on rat midbrain dopaminergic neurones.
    Mercuri NB; Bonci A; Calabresi P; Stratta F; Stefani A; Bernardi G
    Br J Pharmacol; 1994 Nov; 113(3):831-8. PubMed ID: 7858874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Firing modes of midbrain dopamine cells in the freely moving rat.
    Hyland BI; Reynolds JN; Hay J; Perk CG; Miller R
    Neuroscience; 2002; 114(2):475-92. PubMed ID: 12204216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.