These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 20508710)

  • 1. Improved spherical wave least squares method for analyzing periodic arrays of spheres.
    Xie H; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jun; 27(6):1404-12. PubMed ID: 20508710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SERS on periodic arrays of coupled quadrate-holes and squares.
    Hou Y; Xu J; Zhang X; Yu D
    Nanotechnology; 2010 May; 21(19):195203. PubMed ID: 20407143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical Double-Layer Interactions of Regular Arrays of Spheres.
    Kwon GW; Won YS; Yoon BJ
    J Colloid Interface Sci; 1998 Sep; 205(2):423-432. PubMed ID: 9735206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays.
    Zou S; Schatz GC
    J Chem Phys; 2004 Dec; 121(24):12606-12. PubMed ID: 15606284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iterative technique for analysis of periodic structures at oblique incidence in the finite-difference time-domain method.
    Valuev I; Deinega A; Belousov S
    Opt Lett; 2008 Jul; 33(13):1491-3. PubMed ID: 18594675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular simulation of cooperative hydrodynamic effects in motion of a periodic array of spheres between parallel walls.
    Kohale SC; Khare R
    J Chem Phys; 2008 Oct; 129(16):164706. PubMed ID: 19045297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Korringa-Kohn-Rostoker method with projection potentials: exact result for the density.
    Zeller R
    J Phys Condens Matter; 2015 Aug; 27(30):306301. PubMed ID: 26171615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional scattering from a multilayered periodic structure of arbitrary shapes.
    Sesay M; Yokota M
    Appl Opt; 2010 Nov; 49(33):6537-45. PubMed ID: 21102680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inelastic scattering with Chebyshev polynomials and preconditioned conjugate gradient minimization.
    Temel B; Mills G; Metiu H
    J Phys Chem A; 2008 Mar; 112(12):2728-37. PubMed ID: 18303864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-frequency dielectric response of a periodic array of charged spheres in an electrolyte solution: The simple cubic lattice.
    Hou CY; Qian J; Freed DE
    Phys Rev E; 2019 Mar; 99(3-1):032604. PubMed ID: 30999468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion of spheres along a fluid-gas interface.
    Cichocki B; Ekiel-Jezewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2004 Aug; 121(5):2305-16. PubMed ID: 15260785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Dirichlet-to-Neumann map method for scattering by circular cylinders on a lattice.
    She S; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2012 Sep; 29(9):1999-2004. PubMed ID: 23201958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-temperature electronic structure with the Korringa-Kohn-Rostoker Green's function method.
    Starrett CE
    Phys Rev E; 2018 May; 97(5-1):053205. PubMed ID: 29906853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling bulk and surface Pt using the "Gaussian and plane wave" density functional theory formalism: validation and comparison to k-point plane wave calculations.
    Santarossa G; Vargas A; Iannuzzi M; Pignedoli CA; Passerone D; Baiker A
    J Chem Phys; 2008 Dec; 129(23):234703. PubMed ID: 19102548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound field reconstruction using a spherical microphone array.
    Fernandez-Grande E
    J Acoust Soc Am; 2016 Mar; 139(3):1168-78. PubMed ID: 27036253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimum-error method for scattering problems in quantum mechanics: Two stable and efficient implementations.
    Temel B; Mills G; Metiu H
    J Phys Chem A; 2006 Sep; 110(35):10513-20. PubMed ID: 16942058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative motion of spheres arranged in periodic grids between two parallel walls.
    Bhattacharya S
    J Chem Phys; 2008 Feb; 128(7):074709. PubMed ID: 18298166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges.
    Yannopapas V; Moroz A
    J Phys Condens Matter; 2005 Jun; 17(25):3717-34. PubMed ID: 21690692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between Two Spherical Particles with Nonuniform Surface Potentials: The Linearized Poisson-Boltzmann Theory.
    Stankovich J; Carnie SL
    J Colloid Interface Sci; 1999 Aug; 216(2):329-347. PubMed ID: 10421741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The optically detected coherent lattice oscillations in silver and gold monolayer periodic nanoprism arrays: the effect of interparticle coupling.
    Huang W; Qian W; El-Sayed MA
    J Phys Chem B; 2005 Oct; 109(40):18881-8. PubMed ID: 16853430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.