These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 20508929)
1. Characterisation of the flavin-free oxygen-tolerant azoreductase from Xenophilus azovorans KF46F in comparison to flavin-containing azoreductases. Bürger S; Stolz A Appl Microbiol Biotechnol; 2010 Aug; 87(6):2067-76. PubMed ID: 20508929 [TBL] [Abstract][Full Text] [Related]
2. Identification and molecular characterization of a novel flavin-free NADPH preferred azoreductase encoded by azoB in Pigmentiphaga kullae K24. Chen H; Feng J; Kweon O; Xu H; Cerniglia CE BMC Biochem; 2010 Mar; 11():13. PubMed ID: 20233432 [TBL] [Abstract][Full Text] [Related]
3. Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Blümel S; Knackmuss HJ; Stolz A Appl Environ Microbiol; 2002 Aug; 68(8):3948-55. PubMed ID: 12147495 [TBL] [Abstract][Full Text] [Related]
4. Remarkable diversification of bacterial azoreductases: primary sequences, structures, substrates, physiological roles, and biotechnological applications. Suzuki H Appl Microbiol Biotechnol; 2019 May; 103(10):3965-3978. PubMed ID: 30941462 [TBL] [Abstract][Full Text] [Related]
5. Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes. Ryan A; Kaplan E; Nebel JC; Polycarpou E; Crescente V; Lowe E; Preston GM; Sim E PLoS One; 2014; 9(6):e98551. PubMed ID: 24915188 [TBL] [Abstract][Full Text] [Related]
6. Structures of AzrA and of AzrC complexed with substrate or inhibitor: insight into substrate specificity and catalytic mechanism. Yu J; Ogata D; Gai Z; Taguchi S; Tanaka I; Ooi T; Yao M Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):553-64. PubMed ID: 24531489 [TBL] [Abstract][Full Text] [Related]
8. Enhancing survival of Escherichia coli by expression of azoreductase AZR possessing quinone reductase activity. Liu G; Zhou J; Jin R; Zhou M; Wang J; Lu H; Qu Y Appl Microbiol Biotechnol; 2008 Sep; 80(3):409-16. PubMed ID: 18548247 [TBL] [Abstract][Full Text] [Related]
9. The crystal structure of Pseudomonas putida azoreductase - the active site revisited. Gonçalves AM; Mendes S; de Sanctis D; Martins LO; Bento I FEBS J; 2013 Dec; 280(24):6643-57. PubMed ID: 24127652 [TBL] [Abstract][Full Text] [Related]
10. Purification and partial characterization of two azoreductases from Shigella dysenteriae type 1. Ghosh DK; Mandal A; Chaudhuri J FEMS Microbiol Lett; 1992 Nov; 77(1-3):229-33. PubMed ID: 1459414 [TBL] [Abstract][Full Text] [Related]
11. Purification of two azoreductases from Escherichia coli K12. Ghosh DK; Ghosh S; Sadhukhan P; Mandal A; Chaudhuri J Indian J Exp Biol; 1993 Dec; 31(12):951-4. PubMed ID: 8112774 [TBL] [Abstract][Full Text] [Related]
12. Expression and characterization of the genes encoding azoreductases from Bacillus subtilis and Geobacillus stearothermophilus. Sugiura W; Yoda T; Matsuba T; Tanaka Y; Suzuki Y Biosci Biotechnol Biochem; 2006 Jul; 70(7):1655-65. PubMed ID: 16861800 [TBL] [Abstract][Full Text] [Related]
13. Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil. Suzuki Y; Yoda T; Ruhul A; Sugiura W J Biol Chem; 2001 Mar; 276(12):9059-65. PubMed ID: 11134015 [TBL] [Abstract][Full Text] [Related]
14. Revealing the degrading-possibility of methyl red by two azoreductases of Anoxybacillus sp. PDR2 based on molecular docking. Zhang S; Feng L; Han Y; Xu Z; Xu L; An X; Zhang Q Chemosphere; 2024 Mar; 351():141173. PubMed ID: 38232904 [TBL] [Abstract][Full Text] [Related]
15. An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: functional expression and enzymatic characterization. Ooi T; Shibata T; Sato R; Ohno H; Kinoshita S; Thuoc TL; Taguchi S Appl Microbiol Biotechnol; 2007 May; 75(2):377-86. PubMed ID: 17546472 [TBL] [Abstract][Full Text] [Related]
16. Azoreductase from Rhodobacter sphaeroides AS1.1737 is a flavodoxin that also functions as nitroreductase and flavin mononucleotide reductase. Liu G; Zhou J; Lv H; Xiang X; Wang J; Zhou M; Qv Y Appl Microbiol Biotechnol; 2007 Oct; 76(6):1271-9. PubMed ID: 17846764 [TBL] [Abstract][Full Text] [Related]
17. Purification, characterization, and crystal structure of YhdA-type azoreductase from Bacillus velezensis. Bafana A; Khan F; Suguna K Proteins; 2021 May; 89(5):483-492. PubMed ID: 33289153 [TBL] [Abstract][Full Text] [Related]
18. Comparison of two bacterial azoreductases acquired during adaptation to growth on azo dyes. Zimmermann T; Gasser F; Kulla HG; Leisinger T Arch Microbiol; 1984 May; 138(1):37-43. PubMed ID: 6742955 [TBL] [Abstract][Full Text] [Related]
19. Site-directed mutagenesis of substrate binding sites of azoreductase from Rhodobacter sphaeroides. Liu G; Zhou J; Wang J; Yan B; Li J; Lu H; Qu Y; Jin R Biotechnol Lett; 2008 May; 30(5):869-75. PubMed ID: 18165868 [TBL] [Abstract][Full Text] [Related]
20. Recent advances in azo dye degrading enzyme research. Chen H Curr Protein Pept Sci; 2006 Apr; 7(2):101-11. PubMed ID: 16611136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]