These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 20509041)

  • 21. Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3.
    He X; Man VH; Ji B; Xie XQ; Wang J
    J Comput Aided Mol Des; 2019 Jan; 33(1):105-117. PubMed ID: 30218199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Dynamics as a Tool for Virtual Ligand Screening.
    Menchon G; Maveyraud L; Czaplicki G
    Methods Mol Biol; 2018; 1762():145-178. PubMed ID: 29594772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Best practices in free energy calculations for drug design.
    Shirts MR
    Methods Mol Biol; 2012; 819():425-67. PubMed ID: 22183551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ligand binding affinity prediction by linear interaction energy methods.
    Hansson T; Marelius J; Aqvist J
    J Comput Aided Mol Des; 1998 Jan; 12(1):27-35. PubMed ID: 9570087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Consensus scoring for protein-ligand interactions.
    Feher M
    Drug Discov Today; 2006 May; 11(9-10):421-8. PubMed ID: 16635804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational Approaches to the Chemical Equilibrium Constant in Protein-ligand Binding.
    Montalvo-Acosta JJ; Cecchini M
    Mol Inform; 2016 Dec; 35(11-12):555-567. PubMed ID: 27554325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Free Energy Calculations for Protein-Ligand Binding Prediction.
    Jespers W; Åqvist J; Gutiérrez-de-Terán H
    Methods Mol Biol; 2021; 2266():203-226. PubMed ID: 33759129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhance the performance of current scoring functions with the aid of 3D protein-ligand interaction fingerprints.
    Liu J; Su M; Liu Z; Li J; Li Y; Wang R
    BMC Bioinformatics; 2017 Jul; 18(1):343. PubMed ID: 28720122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blind prediction of host-guest binding affinities: a new SAMPL3 challenge.
    Muddana HS; Varnado CD; Bielawski CW; Urbach AR; Isaacs L; Geballe MT; Gilson MK
    J Comput Aided Mol Des; 2012 May; 26(5):475-87. PubMed ID: 22366955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms.
    Cavalli A; Spitaleri A; Saladino G; Gervasio FL
    Acc Chem Res; 2015 Feb; 48(2):277-85. PubMed ID: 25496113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding free energy predictions of farnesoid X receptor (FXR) agonists using a linear interaction energy (LIE) approach with reliability estimation: application to the D3R Grand Challenge 2.
    Rifai EA; van Dijk M; Vermeulen NPE; Geerke DP
    J Comput Aided Mol Des; 2018 Jan; 32(1):239-249. PubMed ID: 28889350
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lambda-dynamics free energy simulation methods.
    Knight JL; Brooks CL
    J Comput Chem; 2009 Aug; 30(11):1692-700. PubMed ID: 19421993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scoring functions for prediction of protein-ligand interactions.
    Wang JC; Lin JH
    Curr Pharm Des; 2013; 19(12):2174-82. PubMed ID: 23016847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ranking poses in structure-based lead discovery and optimization: current trends in scoring function development.
    Rajamani R; Good AC
    Curr Opin Drug Discov Devel; 2007 May; 10(3):308-15. PubMed ID: 17554857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PBSA_E: A PBSA-Based Free Energy Estimator for Protein-Ligand Binding Affinity.
    Liu X; Liu J; Zhu T; Zhang L; He X; Zhang JZ
    J Chem Inf Model; 2016 May; 56(5):854-61. PubMed ID: 27088302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein structure-based drug design: from docking to molecular dynamics.
    Śledź P; Caflisch A
    Curr Opin Struct Biol; 2018 Feb; 48():93-102. PubMed ID: 29149726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP.
    Schindler C; Rippmann F; Kuhn D
    J Comput Aided Mol Des; 2018 Jan; 32(1):265-272. PubMed ID: 28900792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The future of biomolecular simulation in the pharmaceutical industry: what we can learn from aerodynamics modelling and weather prediction. Part 1. understanding the physical and computational complexity of in silico drug design.
    Edwards T; Foloppe N; Harris SA; Wells G
    Acta Crystallogr D Struct Biol; 2021 Nov; 77(Pt 11):1348-1356. PubMed ID: 34726163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational modeling approaches to quantitative structure-binding kinetics relationships in drug discovery.
    De Benedetti PG; Fanelli F
    Drug Discov Today; 2018 Jul; 23(7):1396-1406. PubMed ID: 29574212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.