These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 205095)

  • 41. Base pairing and fidelity in codon-anticodon interaction.
    Topal MD; Fresco JR
    Nature; 1976 Sep; 263(5575):289-93. PubMed ID: 958483
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Restriction or amplification of wobble recognition: the structure of 2-thio-5-methylaminomethyluridine and the interaction of odd uridines with the anticodon loop backbone.
    Hillen W; Egert E; Lindner HJ; Gassen HG
    FEBS Lett; 1978 Oct; 94(2):361-4. PubMed ID: 700157
    [No Abstract]   [Full Text] [Related]  

  • 43. Origin of the genetic code: a testable hypothesis based on tRNA structure, sequence, and kinetic proofreading.
    Hopfield JJ
    Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4334-8. PubMed ID: 279919
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural organization of complexes of transfer RNAs with aminoacyl transfer RNA synthetases.
    Rich A; Schimmel PR
    Nucleic Acids Res; 1977; 4(5):1649-65. PubMed ID: 331261
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase.
    Schulman LH; Pelka H; Susani M
    Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA.
    Auxilien S; Crain PF; Trewyn RW; Grosjean H
    J Mol Biol; 1996 Oct; 262(4):437-58. PubMed ID: 8893855
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nuclear magnetic resonance studies on yeast tRNAPhe. II. Assignment of the iminoproton resonances of the anticodon and T stem by means of nuclear Overhauser effect experiments at 500 MHz.
    Heerschap A; Haasnoot CA; Hilbers CW
    Nucleic Acids Res; 1983 Jul; 11(13):4483-99. PubMed ID: 6346268
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Complementary-addressed (sequence-specific) modification of nucleic acids.
    Knorre DG; Vlassov VV
    Prog Nucleic Acid Res Mol Biol; 1985; 32():291-320. PubMed ID: 2418466
    [No Abstract]   [Full Text] [Related]  

  • 49. Enzymatic synthesis of chimeric tRNAs with unusual numbers of base pairs in the anticodon stem; their structure and properties.
    Nishikawa K
    Nucleic Acids Symp Ser; 1986; (17):167-70. PubMed ID: 3645546
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aminoacylation of transfer RNAs with 2-thiouridine derivatives in the wobble position of the anticodon.
    Rogers KC; Crescenzo AT; Söll D
    Biochimie; 1995; 77(1-2):66-74. PubMed ID: 7541255
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Mini-tRNA as a tool for identification of tRNA structural elements responsible for aminoacylation].
    Bakowska K; Dudzińska-Bajorek B; Twardowski T
    Postepy Biochem; 2004; 50(1):2-10. PubMed ID: 15497639
    [No Abstract]   [Full Text] [Related]  

  • 52. Enzymatic replacement of the anticodon of yeast phenylalanine transfer ribonucleic acid.
    Bruce AG; Uhlenbeck OC
    Biochemistry; 1982 Mar; 21(5):855-61. PubMed ID: 7041969
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the dynamic model of tRNA: recent experimental findings.
    Gurel O
    Z Naturforsch C Biosci; 1979; 34(3-4):248-52. PubMed ID: 156468
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transfer RNA: change of conformation upon aminoacylation determined by Raman spectroscopy.
    Thomas GJ; Chen MC; Lord RC; Kotsiopoulos PS; Tritton TR; Mohr SC
    Biochem Biophys Res Commun; 1973 Sep; 54(2):570-7. PubMed ID: 4585688
    [No Abstract]   [Full Text] [Related]  

  • 55. RNA minihelices and the decoding of genetic information.
    Schimmel P
    FASEB J; 1991 May; 5(8):2180-7. PubMed ID: 2022314
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Yeast ochre suppressor SUQ5-ol is an altered tRNA Ser UCA.
    Waldron C; Cox BS; Wills N; Gesteland RF; Piper PW; Colby D; Guthrie C
    Nucleic Acids Res; 1981 Jul; 9(13):3077-88. PubMed ID: 7024909
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular biology. A renewed focus on transfer RNA.
    Daviter T; Murphy FV; Ramakrishnan V
    Science; 2005 May; 308(5725):1123-4. PubMed ID: 15905389
    [No Abstract]   [Full Text] [Related]  

  • 58. Specific substitution into the anticodon loop of yeast tyrosine transfer RNA.
    Bare LA; Uhlenbeck OC
    Biochemistry; 1986 Sep; 25(19):5825-30. PubMed ID: 3535890
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Transfer ribonucleic acids. Structure-functional aspects].
    Baev AA; Venkstern TV
    Mol Biol (Mosk); 1977; 11(6):1220-33. PubMed ID: 377057
    [No Abstract]   [Full Text] [Related]  

  • 60. The conformation of the anticodon loop of yeast tRNAPhe in solution and on ribosomes.
    Odom OW; Craig BB; Hardesty BA
    Biopolymers; 1978 Dec; 17(12):2909-31. PubMed ID: 365255
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.