These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20509679)

  • 1. Enhanced energy dissipation in periodic epoxy nanoframes.
    Lee JH; Wang L; Kooi S; Boyce MC; Thomas EL
    Nano Lett; 2010 Jul; 10(7):2592-7. PubMed ID: 20509679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing of Liquid Crystal Elastomer Foams for Enhanced Energy Dissipation Under Mechanical Insult.
    Luo C; Chung C; Traugutt NA; Yakacki CM; Long KN; Yu K
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12698-12708. PubMed ID: 33369399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation.
    Castro M; Baltazar SE; Rojas-Nunez J; Bringa E; Valencia FJ; Allende S
    Sci Rep; 2022 Apr; 12(1):5965. PubMed ID: 35396368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy dissipation capacities of CAD-CAM restorative materials: A comparative evaluation of resilience and toughness.
    Niem T; Youssef N; Wöstmann B
    J Prosthet Dent; 2019 Jan; 121(1):101-109. PubMed ID: 30017162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interbody fusion cage design using integrated global layout and local microstructure topology optimization.
    Lin CY; Hsiao CC; Chen PQ; Hollister SJ
    Spine (Phila Pa 1976); 2004 Aug; 29(16):1747-54. PubMed ID: 15303018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of TiO(2) nanoframe and the prototype of a nanoframe solar cell.
    Chen Y; Kim HC; McVittie J; Ting C; Nishi Y
    Nanotechnology; 2010 May; 21(18):185303. PubMed ID: 20378944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Energy Dissipation Performance in Epoxy Coatings by the Synergistic Effect of Carbon Nanotube/Block Copolymer Conjugates.
    Garate H; Bianchi M; Pietrasanta LI; Goyanes S; D'Accorso NB
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):930-943. PubMed ID: 28004915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanonetwork Thermosets from Templated Polymerization for Enhanced Energy Dissipation.
    Siddique SK; Lin TC; Chang CY; Chang YH; Lee CC; Chang SY; Tsai PC; Jeng YR; Thomas EL; Ho RM
    Nano Lett; 2021 Apr; 21(8):3355-3363. PubMed ID: 33856816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh energy-dissipation elastomers by precisely tailoring the relaxation of confined polymer fluids.
    Huang J; Xu Y; Qi S; Zhou J; Shi W; Zhao T; Liu M
    Nat Commun; 2021 Jun; 12(1):3610. PubMed ID: 34127666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic Nanoframes and Beyond.
    Kwon T; Jun M; Lee K
    Adv Mater; 2020 Aug; 32(33):e2001345. PubMed ID: 32633878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy dissipation in functionally two-dimensional phase transforming cellular materials.
    Zhang Y; Restrepo D; Velay-Lizancos M; Mankame ND; Zavattieri PD
    Sci Rep; 2019 Aug; 9(1):12581. PubMed ID: 31467381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Surface-Enhanced Raman Spectroscopy Analysis through 3D Superlattice Arrays of Au Nanoframes with Attomolar Detection.
    Kim D; Lee J; Yoo S; Choi S; Park D; Park S
    Anal Chem; 2020 Jan; 92(2):1972-1977. PubMed ID: 31876408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of property gradients on the mechanical behavior of human enamel.
    An B; Wang R; Arola D; Zhang D
    J Mech Behav Biomed Mater; 2012 May; 9():63-72. PubMed ID: 22498284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the relationship between indentation hardness and modulus, and the damage resistance of biological materials.
    Labonte D; Lenz AK; Oyen ML
    Acta Biomater; 2017 Jul; 57():373-383. PubMed ID: 28546134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong, Ultralight Nanofoams with Extreme Recovery and Dissipation by Manipulation of Internal Adhesive Contacts.
    Park SJ; Shin J; Magagnosc DJ; Kim S; Cao C; Turner KT; Purohit PK; Gianola DS; Hart AJ
    ACS Nano; 2020 Jul; 14(7):8383-8391. PubMed ID: 32348120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-Area Nanolattice Film with Enhanced Modulus, Hardness, and Energy Dissipation.
    Bagal A; Zhang XA; Shahrin R; Dandley EC; Zhao J; Poblete FR; Oldham CJ; Zhu Y; Parsons GN; Bobko C; Chang CH
    Sci Rep; 2017 Aug; 7(1):9145. PubMed ID: 28831168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of New Density-Strength Scaling Law in 3D Hollow Ceramic Nanoarchitectures.
    Na YE; Shin D; Kim K; Ahn C; Jeon S; Jang D
    Small; 2018 Nov; 14(44):e1802239. PubMed ID: 30286275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical behavior and microstructure of compressed Ti foams synthesized via freeze casting.
    Jenei P; Choi H; Tóth A; Choe H; Gubicza J
    J Mech Behav Biomed Mater; 2016 Oct; 63():407-416. PubMed ID: 27469602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of composite polymer microstructures fabricated by interference lithography.
    Singamaneni S; Chang S; Jang JH; Davis W; Thomas EL; Tsukruk VV
    Phys Chem Chem Phys; 2008 Jul; 10(28):4093-105. PubMed ID: 18612511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metasurface-Enabled Holographic Lithography for Impact-Absorbing Nanoarchitected Sheets.
    Kagias M; Lee S; Friedman AC; Zheng T; Veysset D; Faraon A; Greer JR
    Adv Mater; 2023 Mar; 35(13):e2209153. PubMed ID: 36649979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.