These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 20509686)
1. High-performance nanostructured inorganic-organic heterojunction solar cells. Chang JA; Rhee JH; Im SH; Lee YH; Kim HJ; Seok SI; Nazeeruddin MK; Gratzel M Nano Lett; 2010 Jul; 10(7):2609-12. PubMed ID: 20509686 [TBL] [Abstract][Full Text] [Related]
2. Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Chang JA; Im SH; Lee YH; Kim HJ; Lim CS; Heo JH; Seok SI Nano Lett; 2012 Apr; 12(4):1863-7. PubMed ID: 22401668 [TBL] [Abstract][Full Text] [Related]
3. An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene). Wu J; Yue G; Xiao Y; Lin J; Huang M; Lan Z; Tang Q; Huang Y; Fan L; Yin S; Sato T Sci Rep; 2013; 3():1283. PubMed ID: 23412470 [TBL] [Abstract][Full Text] [Related]
4. Improvement of external quantum efficiency depressed by visible light-absorbing hole transport material in solid-state semiconductor-sensitized heterojunction solar cells. Lim CS; Im SH; Chang JA; Lee YH; Kim HJ; Seok SI Nanoscale; 2012 Jan; 4(2):429-32. PubMed ID: 22117234 [TBL] [Abstract][Full Text] [Related]
5. Temperature-stable and optically transparent thin-film zinc oxide aerogel electrodes as model systems for 3D interpenetrating organic-inorganic heterojunction solar cells. Krumm M; Pawlitzek F; Weickert J; Schmidt-Mende L; Polarz S ACS Appl Mater Interfaces; 2012 Dec; 4(12):6522-9. PubMed ID: 23194020 [TBL] [Abstract][Full Text] [Related]
6. Photovoltaic characterization of hybrid solar cells using surface modified TiO(2) nanoparticles and poly(3-hexyl)thiophene. Günes S; Marjanovic N; Nedeljkovic JM; Sariciftci NS Nanotechnology; 2008 Oct; 19(42):424009. PubMed ID: 21832669 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous improvements in power conversion efficiency and operational stability of polymer solar cells by interfacial engineering. Elumalai NK; Vijila C; Jose R; Ming KZ; Saha A; Ramakrishna S Phys Chem Chem Phys; 2013 Nov; 15(43):19057-64. PubMed ID: 24100603 [TBL] [Abstract][Full Text] [Related]
8. Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter. Zhang M; Lyu M; Yu H; Yun JH; Wang Q; Wang L Chemistry; 2015 Jan; 21(1):434-9. PubMed ID: 25358456 [TBL] [Abstract][Full Text] [Related]
9. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Jung EH; Jeon NJ; Park EY; Moon CS; Shin TJ; Yang TY; Noh JH; Seo J Nature; 2019 Mar; 567(7749):511-515. PubMed ID: 30918371 [TBL] [Abstract][Full Text] [Related]
10. The influence of the organic/inorganic interface on the organic-inorganic hybrid solar cells. Ichikawa T; Shiratori S J Nanosci Nanotechnol; 2012 May; 12(5):3725-31. PubMed ID: 22852300 [TBL] [Abstract][Full Text] [Related]
11. Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications. Kim CH; Cha SH; Kim SC; Song M; Lee J; Shin WS; Moon SJ; Bahng JH; Kotov NA; Jin SH ACS Nano; 2011 Apr; 5(4):3319-25. PubMed ID: 21438626 [TBL] [Abstract][Full Text] [Related]
12. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Aharon S; Gamliel S; El Cohen B; Etgar L Phys Chem Chem Phys; 2014 Jun; 16(22):10512-8. PubMed ID: 24736900 [TBL] [Abstract][Full Text] [Related]
13. Yttrium-substituted nanocrystalline TiO₂ photoanodes for perovskite based heterojunction solar cells. Qin P; Domanski AL; Chandiran AK; Berger R; Butt HJ; Dar MI; Moehl T; Tetreault N; Gao P; Ahmad S; Nazeeruddin MK; Grätzel M Nanoscale; 2014; 6(3):1508-14. PubMed ID: 24322660 [TBL] [Abstract][Full Text] [Related]
14. Sb(2)Se(3) -sensitized inorganic-organic heterojunction solar cells fabricated using a single-source precursor. Choi YC; Mandal TN; Yang WS; Lee YH; Im SH; Noh JH; Seok SI Angew Chem Int Ed Engl; 2014 Jan; 53(5):1329-33. PubMed ID: 24339328 [TBL] [Abstract][Full Text] [Related]
15. Hybrid solar cells from MDMO-PPV and silicon nanocrystals. Liu CY; Kortshagen UR Nanoscale; 2012 Jul; 4(13):3963-8. PubMed ID: 22660893 [TBL] [Abstract][Full Text] [Related]
16. Polymer/Fullerene Blend Solar Cells with Cadmium Sulfide Thin Film as an Alternative Hole-Blocking Layer. Thanihaichelvan M; Loheeswaran S; Balashangar K; Velauthapillai D; Ravirajan P Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960444 [TBL] [Abstract][Full Text] [Related]
17. ZnO and conjugated polymer bulk heterojunction solar cells containing ZnO nanorod photoanode. Lee TH; Sue HJ; Cheng X Nanotechnology; 2011 Jul; 22(28):285401. PubMed ID: 21625040 [TBL] [Abstract][Full Text] [Related]
18. Morphology Control of Monomer-Polymer Hybrid Electron Acceptor for Bulk-Heterojunction Solar Cell Based on P3HT and Ti-Alkoxide with Ladder Polymer. Ueda Y; Kurokawa Y; Nishii K; Kanematsu H; Fukumoto T; Kato T Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161139 [TBL] [Abstract][Full Text] [Related]
19. P3HT as hole transport material and assistant light absorber in CdS quantum dots-sensitized solid-state solar cells. Qian J; Liu QS; Li G; Jiang KJ; Yang LM; Song Y Chem Commun (Camb); 2011 Jun; 47(22):6461-3. PubMed ID: 21552591 [TBL] [Abstract][Full Text] [Related]
20. Enhanced electronic contacts in SnO2-dye-P3HT based solid state dye sensitized solar cells. Sadoughi G; Sivaram V; Gunning R; Docampo P; Bruder I; Pschirer N; Irajizad A; Snaith HJ Phys Chem Chem Phys; 2013 Feb; 15(6):2075-80. PubMed ID: 23288145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]