BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 20509827)

  • 1. Understanding non rapid eye movement sleep through neuroimaging.
    Maquet P
    World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():9-15. PubMed ID: 20509827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous neural activity during human non-rapid eye movement sleep.
    Mascetti L; Foret A; Bourdiec AS; Muto V; Kussé C; Jaspar M; Matarazzo L; Dang-Vu T; Schabus M; Maquet P
    Prog Brain Res; 2011; 193():111-8. PubMed ID: 21854959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study.
    Kaufmann C; Wehrle R; Wetter TC; Holsboer F; Auer DP; Pollmächer T; Czisch M
    Brain; 2006 Mar; 129(Pt 3):655-67. PubMed ID: 16339798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurophysiology of sleep and wakefulness.
    Harris CD
    Respir Care Clin N Am; 2005 Dec; 11(4):567-86. PubMed ID: 16303589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming.
    Maquet P; Péters J; Aerts J; Delfiore G; Degueldre C; Luxen A; Franck G
    Nature; 1996 Sep; 383(6596):163-6. PubMed ID: 8774879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The visual scoring of sleep and arousal in infants and children.
    Grigg-Damberger M; Gozal D; Marcus CL; Quan SF; Rosen CL; Chervin RD; Wise M; Picchietti DL; Sheldon SH; Iber C
    J Clin Sleep Med; 2007 Mar; 3(2):201-40. PubMed ID: 17557427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement.
    Olbrich S; Mulert C; Karch S; Trenner M; Leicht G; Pogarell O; Hegerl U
    Neuroimage; 2009 Apr; 45(2):319-32. PubMed ID: 19110062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Functional brain plasticity associated with motor learning].
    Doyon J; Orban P; Barakat M; Debas K; Lungu O; Albouy G; Fogel S; Proulx S; Laventure S; Deslauriers J; Duchesne C; Carrier J; Benali H
    Med Sci (Paris); 2011 Apr; 27(4):413-20. PubMed ID: 21524407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered processing of acoustic stimuli during sleep: reduced auditory activation and visual deactivation detected by a combined fMRI/EEG study.
    Czisch M; Wetter TC; Kaufmann C; Pollmächer T; Holsboer F; Auer DP
    Neuroimage; 2002 May; 16(1):251-8. PubMed ID: 11969332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale functional brain networks in human non-rapid eye movement sleep: insights from combined electroencephalographic/functional magnetic resonance imaging studies.
    Spoormaker VI; Czisch M; Maquet P; Jäncke L
    Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1952):3708-29. PubMed ID: 21893524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Blood circulation and energy metabolism of the brain in healthy sleep].
    Hajak G; Klingelhöfer J; Schulz-Varszegi M; Rüther E
    Nervenarzt; 1993 Jul; 64(7):456-67. PubMed ID: 8366971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MEG identifies dorsal medial brain activations during sleep.
    Ioannides AA; Kostopoulos GK; Liu L; Fenwick PB
    Neuroimage; 2009 Jan; 44(2):455-68. PubMed ID: 18950718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional neuroimaging insights into the physiology of human sleep.
    Dang-Vu TT; Schabus M; Desseilles M; Sterpenich V; Bonjean M; Maquet P
    Sleep; 2010 Dec; 33(12):1589-603. PubMed ID: 21120121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal phenomena associated with vigilance and consciousness: from cellular mechanisms to electroencephalographic patterns.
    Coenen AM
    Conscious Cogn; 1998 Mar; 7(1):42-53. PubMed ID: 9521831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural generators of brain potentials before rapid eye movements during human REM sleep: a study using sLORETA.
    Abe T; Ogawa K; Nittono H; Hori T
    Clin Neurophysiol; 2008 Sep; 119(9):2044-53. PubMed ID: 18620906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for 2-stage models of sleep and memory: learning-dependent changes in spindles and theta in rats.
    Fogel SM; Smith CT; Beninger RJ
    Brain Res Bull; 2009 Aug; 79(6):445-51. PubMed ID: 19559345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the brain's default mode network from wakefulness to slow wave sleep.
    Sämann PG; Wehrle R; Hoehn D; Spoormaker VI; Peters H; Tully C; Holsboer F; Czisch M
    Cereb Cortex; 2011 Sep; 21(9):2082-93. PubMed ID: 21330468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations.
    Bergmann TO; Mölle M; Diedrichs J; Born J; Siebner HR
    Neuroimage; 2012 Feb; 59(3):2733-42. PubMed ID: 22037418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans.
    Clemens Z; Mölle M; Eross L; Barsi P; Halász P; Born J
    Brain; 2007 Nov; 130(Pt 11):2868-78. PubMed ID: 17615093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.