These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 20509827)
1. Understanding non rapid eye movement sleep through neuroimaging. Maquet P World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():9-15. PubMed ID: 20509827 [TBL] [Abstract][Full Text] [Related]
2. Spontaneous neural activity during human non-rapid eye movement sleep. Mascetti L; Foret A; Bourdiec AS; Muto V; Kussé C; Jaspar M; Matarazzo L; Dang-Vu T; Schabus M; Maquet P Prog Brain Res; 2011; 193():111-8. PubMed ID: 21854959 [TBL] [Abstract][Full Text] [Related]
3. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Kaufmann C; Wehrle R; Wetter TC; Holsboer F; Auer DP; Pollmächer T; Czisch M Brain; 2006 Mar; 129(Pt 3):655-67. PubMed ID: 16339798 [TBL] [Abstract][Full Text] [Related]
4. Neurophysiology of sleep and wakefulness. Harris CD Respir Care Clin N Am; 2005 Dec; 11(4):567-86. PubMed ID: 16303589 [TBL] [Abstract][Full Text] [Related]
5. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Maquet P; Péters J; Aerts J; Delfiore G; Degueldre C; Luxen A; Franck G Nature; 1996 Sep; 383(6596):163-6. PubMed ID: 8774879 [TBL] [Abstract][Full Text] [Related]
6. The visual scoring of sleep and arousal in infants and children. Grigg-Damberger M; Gozal D; Marcus CL; Quan SF; Rosen CL; Chervin RD; Wise M; Picchietti DL; Sheldon SH; Iber C J Clin Sleep Med; 2007 Mar; 3(2):201-40. PubMed ID: 17557427 [TBL] [Abstract][Full Text] [Related]
7. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. Villablanca JR J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255 [TBL] [Abstract][Full Text] [Related]
8. EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement. Olbrich S; Mulert C; Karch S; Trenner M; Leicht G; Pogarell O; Hegerl U Neuroimage; 2009 Apr; 45(2):319-32. PubMed ID: 19110062 [TBL] [Abstract][Full Text] [Related]
9. [Functional brain plasticity associated with motor learning]. Doyon J; Orban P; Barakat M; Debas K; Lungu O; Albouy G; Fogel S; Proulx S; Laventure S; Deslauriers J; Duchesne C; Carrier J; Benali H Med Sci (Paris); 2011 Apr; 27(4):413-20. PubMed ID: 21524407 [TBL] [Abstract][Full Text] [Related]
10. Altered processing of acoustic stimuli during sleep: reduced auditory activation and visual deactivation detected by a combined fMRI/EEG study. Czisch M; Wetter TC; Kaufmann C; Pollmächer T; Holsboer F; Auer DP Neuroimage; 2002 May; 16(1):251-8. PubMed ID: 11969332 [TBL] [Abstract][Full Text] [Related]
11. Large-scale functional brain networks in human non-rapid eye movement sleep: insights from combined electroencephalographic/functional magnetic resonance imaging studies. Spoormaker VI; Czisch M; Maquet P; Jäncke L Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1952):3708-29. PubMed ID: 21893524 [TBL] [Abstract][Full Text] [Related]
12. [Blood circulation and energy metabolism of the brain in healthy sleep]. Hajak G; Klingelhöfer J; Schulz-Varszegi M; Rüther E Nervenarzt; 1993 Jul; 64(7):456-67. PubMed ID: 8366971 [TBL] [Abstract][Full Text] [Related]
13. MEG identifies dorsal medial brain activations during sleep. Ioannides AA; Kostopoulos GK; Liu L; Fenwick PB Neuroimage; 2009 Jan; 44(2):455-68. PubMed ID: 18950718 [TBL] [Abstract][Full Text] [Related]
14. Neuronal phenomena associated with vigilance and consciousness: from cellular mechanisms to electroencephalographic patterns. Coenen AM Conscious Cogn; 1998 Mar; 7(1):42-53. PubMed ID: 9521831 [TBL] [Abstract][Full Text] [Related]
15. Neural generators of brain potentials before rapid eye movements during human REM sleep: a study using sLORETA. Abe T; Ogawa K; Nittono H; Hori T Clin Neurophysiol; 2008 Sep; 119(9):2044-53. PubMed ID: 18620906 [TBL] [Abstract][Full Text] [Related]
16. Functional neuroimaging insights into the physiology of human sleep. Dang-Vu TT; Schabus M; Desseilles M; Sterpenich V; Bonjean M; Maquet P Sleep; 2010 Dec; 33(12):1589-603. PubMed ID: 21120121 [TBL] [Abstract][Full Text] [Related]
17. Evidence for 2-stage models of sleep and memory: learning-dependent changes in spindles and theta in rats. Fogel SM; Smith CT; Beninger RJ Brain Res Bull; 2009 Aug; 79(6):445-51. PubMed ID: 19559345 [TBL] [Abstract][Full Text] [Related]
18. Development of the brain's default mode network from wakefulness to slow wave sleep. Sämann PG; Wehrle R; Hoehn D; Spoormaker VI; Peters H; Tully C; Holsboer F; Czisch M Cereb Cortex; 2011 Sep; 21(9):2082-93. PubMed ID: 21330468 [TBL] [Abstract][Full Text] [Related]
19. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations. Bergmann TO; Mölle M; Diedrichs J; Born J; Siebner HR Neuroimage; 2012 Feb; 59(3):2733-42. PubMed ID: 22037418 [TBL] [Abstract][Full Text] [Related]
20. Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans. Clemens Z; Mölle M; Eross L; Barsi P; Halász P; Born J Brain; 2007 Nov; 130(Pt 11):2868-78. PubMed ID: 17615093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]