BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20510344)

  • 1. Autoprocessing and self-activation of the secreted protease CPAF in Chlamydia-infected cells.
    Chen D; Lei L; Flores R; Huang Z; Wu Z; Chai J; Zhong G
    Microb Pathog; 2010 Oct; 49(4):164-73. PubMed ID: 20510344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches.
    Snavely EA; Kokes M; Dunn JD; Saka HA; Nguyen BD; Bastidas RJ; McCafferty DG; Valdivia RH
    Pathog Dis; 2014 Aug; 71(3):336-51. PubMed ID: 24838663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydia trachomatis outer membrane complex protein B (OmcB) is processed by the protease CPAF.
    Hou S; Lei L; Yang Z; Qi M; Liu Q; Zhong G
    J Bacteriol; 2013 Mar; 195(5):951-7. PubMed ID: 23222729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptidase Inhibitor 15 (PI15) Regulates Chlamydial CPAF Activity.
    Prusty BK; Chowdhury SR; Gulve N; Rudel T
    Front Cell Infect Microbiol; 2018; 8():183. PubMed ID: 29900129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secretion of the chlamydial virulence factor CPAF requires the Sec-dependent pathway.
    Chen D; Lei L; Lu C; Flores R; DeLisa MP; Roberts TC; Romesberg FE; Zhong G
    Microbiology (Reading); 2010 Oct; 156(Pt 10):3031-3040. PubMed ID: 20522495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cleavage-dependent activation of a chlamydia-secreted protease.
    Dong F; Pirbhai M; Zhong Y; Zhong G
    Mol Microbiol; 2004 Jun; 52(5):1487-94. PubMed ID: 15165249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells.
    Pirbhai M; Dong F; Zhong Y; Pan KZ; Zhong G
    J Biol Chem; 2006 Oct; 281(42):31495-501. PubMed ID: 16940052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CPAF: a Chlamydial protease in search of an authentic substrate.
    Chen AL; Johnson KA; Lee JK; Sütterlin C; Tan M
    PLoS Pathog; 2012; 8(8):e1002842. PubMed ID: 22876181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of CPAF mutants: new functions, new questions (the ins and outs of a chlamydial protease).
    Bavoil PM; Byrne GI
    Pathog Dis; 2014 Aug; 71(3):287-91. PubMed ID: 24942261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for activation and inhibition of the secreted chlamydia protease CPAF.
    Huang Z; Feng Y; Chen D; Wu X; Huang S; Wang X; Xiao X; Li W; Huang N; Gu L; Zhong G; Chai J
    Cell Host Microbe; 2008 Dec; 4(6):529-42. PubMed ID: 19064254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Chlamydia protease CPAF regulates host and bacterial proteins to maintain pathogen vacuole integrity and promote virulence.
    Jorgensen I; Bednar MM; Amin V; Davis BK; Ting JP; McCafferty DG; Valdivia RH
    Cell Host Microbe; 2011 Jul; 10(1):21-32. PubMed ID: 21767809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of Chlamydia trachomatis hypothetical protein CT311 in host cell cytoplasm.
    Lei L; Qi M; Budrys N; Schenken R; Zhong G
    Microb Pathog; 2011 Sep; 51(3):101-9. PubMed ID: 21605656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The host adherens junction molecule nectin-1 is degraded by chlamydial protease-like activity factor (CPAF) in Chlamydia trachomatis-infected genital epithelial cells.
    Sun J; Schoborg RV
    Microbes Infect; 2009 Jan; 11(1):12-9. PubMed ID: 18983929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human antibody responses to a Chlamydia-secreted protease factor.
    Sharma J; Bosnic AM; Piper JM; Zhong G
    Infect Immun; 2004 Dec; 72(12):7164-71. PubMed ID: 15557641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of proteolytic activity of a chlamydial proteasome/protease-like activity factor by antibodies from humans infected with Chlamydia trachomatis.
    Sharma J; Dong F; Pirbhai M; Zhong G
    Infect Immun; 2005 Jul; 73(7):4414-9. PubMed ID: 15972540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the Autoproteolytic Processing and Catalytic Mechanism of the
    Dudiak BM; Maksimchuk KR; Bednar MM; Podracky CJ; Burg JM; Nguyen TM; Nwogbo FO; Valdivia RH; McCafferty DG
    Biochemistry; 2019 Aug; 58(33):3527-3536. PubMed ID: 31386347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of CPAF critical residues and secretion during Chlamydia trachomatis infection.
    Yang Z; Tang L; Sun X; Chai J; Zhong G
    Infect Immun; 2015 Jun; 83(6):2234-41. PubMed ID: 25776755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying catalytic residues in CPAF, a Chlamydia-secreted protease.
    Chen D; Chai J; Hart PJ; Zhong G
    Arch Biochem Biophys; 2009 May; 485(1):16-23. PubMed ID: 19388144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a secreted Chlamydia protease.
    Shaw AC; Vandahl BB; Larsen MR; Roepstorff P; Gevaert K; Vandekerckhove J; Christiansen G; Birkelund S
    Cell Microbiol; 2002 Jul; 4(7):411-24. PubMed ID: 12102687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. the active site residue V266 of Chlamydial HtrA is critical for substrate binding during both in vitro and in vivo conditions.
    Gloeckl S; Tyndall JD; Stansfield SH; Timms P; Huston WM
    J Mol Microbiol Biotechnol; 2012; 22(1):10-6. PubMed ID: 22353774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.