BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20510351)

  • 1. Epigallocatechin-3-gallate inhibits mast cell degranulation, leukotriene C4 secretion, and calcium influx via mitochondrial calcium dysfunction.
    Inoue T; Suzuki Y; Ra C
    Free Radic Biol Med; 2010 Aug; 49(4):632-40. PubMed ID: 20510351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigallocatechin-3-gallate induces cytokine production in mast cells by stimulating an extracellular superoxide-mediated calcium influx.
    Inoue T; Suzuki Y; Ra C
    Biochem Pharmacol; 2011 Dec; 82(12):1930-9. PubMed ID: 21945989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Ca2+ flux is a critical determinant of the Ca2+ dependence of mast cell degranulation.
    Suzuki Y; Yoshimaru T; Inoue T; Ra C
    J Leukoc Biol; 2006 Mar; 79(3):508-18. PubMed ID: 16365155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. (-)-Epigallocatechin-3-gallate induces apoptosis of human hepatoma cells by mitochondrial pathways related to reactive oxygen species.
    Li W; Nie S; Yu Q; Xie M
    J Agric Food Chem; 2009 Aug; 57(15):6685-91. PubMed ID: 19601628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aspirin and salicylates modulate IgE-mediated leukotriene secretion in mast cells through a dihydropyridine receptor-mediated Ca(2+) influx.
    Togo K; Suzuki Y; Yoshimaru T; Inoue T; Terui T; Ochiai T; Ra C
    Clin Immunol; 2009 Apr; 131(1):145-56. PubMed ID: 19144570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver activates mast cells through reactive oxygen species production and a thiol-sensitive store-independent Ca2+ influx.
    Yoshimaru T; Suzuki Y; Inoue T; Niide O; Ra C
    Free Radic Biol Med; 2006 Jun; 40(11):1949-59. PubMed ID: 16716896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric Oxide positively regulates Ag (I)-induced Ca(2+) influx and mast cell activation: role of a Nitric Oxide Synthase-independent pathway.
    Inoue T; Suzuki Y; Yoshimaru T; Ra C
    J Leukoc Biol; 2009 Dec; 86(6):1365-75. PubMed ID: 19706839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green tea component, catechin, induces apoptosis of human malignant B cells via production of reactive oxygen species.
    Nakazato T; Ito K; Ikeda Y; Kizaki M
    Clin Cancer Res; 2005 Aug; 11(16):6040-9. PubMed ID: 16115949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory effects of epigallocatechin gallate on compound 48/80-induced mast cell activation and passive cutaneous anaphylaxis.
    Li GZ; Chai OH; Song CH
    Exp Mol Med; 2005 Aug; 37(4):290-6. PubMed ID: 16155406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective effects of EGCg or GCg, a green tea catechin epimer, against postischemic myocardial dysfunction in guinea-pig hearts.
    Hirai M; Hotta Y; Ishikawa N; Wakida Y; Fukuzawa Y; Isobe F; Nakano A; Chiba T; Kawamura N
    Life Sci; 2007 Feb; 80(11):1020-32. PubMed ID: 17174345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-type Ca2+ channels in mast cells: activation by membrane depolarization and distinct roles in regulating mediator release from store-operated Ca2+ channels.
    Yoshimaru T; Suzuki Y; Inoue T; Ra C
    Mol Immunol; 2009 Apr; 46(7):1267-77. PubMed ID: 19128833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold activates mast cells via calcium influx through multiple H2O2-sensitive pathways including L-type calcium channels.
    Hayama K; Suzuki Y; Inoue T; Ochiai T; Terui T; Ra C
    Free Radic Biol Med; 2011 May; 50(10):1417-28. PubMed ID: 21376117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of green tea (-)-epigallocatechin-3-gallate on reactive oxygen species in 3T3-L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways.
    Wang CT; Chang HH; Hsiao CH; Lee MJ; Ku HC; Hu YJ; Kao YH
    Mol Nutr Food Res; 2009 Mar; 53(3):349-60. PubMed ID: 19065584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca v 1.2 L-type Ca2+ channel protects mast cells against activation-induced cell death by preventing mitochondrial integrity disruption.
    Suzuki Y; Yoshimaru T; Inoue T; Ra C
    Mol Immunol; 2009 Jul; 46(11-12):2370-80. PubMed ID: 19447492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigallocatechin gallate inhibits histamine release from rat basophilic leukemia (RBL-2H3) cells: role of tyrosine phosphorylation pathway.
    Yamashita K; Suzuki Y; Matsui T; Yoshimaru T; Yamaki M; Suzuki-Karasaki M; Hayakawa S; Shimizu K
    Biochem Biophys Res Commun; 2000 Aug; 274(3):603-8. PubMed ID: 10924324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of NADPH oxidase subunits translocation by tea catechin EGCG in mast cell.
    Nishikawa H; Wakano K; Kitani S
    Biochem Biophys Res Commun; 2007 Oct; 362(2):504-9. PubMed ID: 17707774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (-)-Epigallocatechin gallate attenuates glutamate-induced cytotoxicity via intracellular Ca modulation in PC12 cells.
    Lee JH; Song DK; Jung CH; Shin DH; Park J; Kwon TK; Jang BC; Mun KC; Kim SP; Suh SI; Bae JH
    Clin Exp Pharmacol Physiol; 2004 Aug; 31(8):530-6. PubMed ID: 15298546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer's amyloid-induced mitochondrial dysfunction.
    Dragicevic N; Smith A; Lin X; Yuan F; Copes N; Delic V; Tan J; Cao C; Shytle RD; Bradshaw PC
    J Alzheimers Dis; 2011; 26(3):507-21. PubMed ID: 21694462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tea catechins protect against lead-induced ROS formation, mitochondrial dysfunction, and calcium dysregulation in PC12 cells.
    Chen L; Yang X; Jiao H; Zhao B
    Chem Res Toxicol; 2003 Sep; 16(9):1155-61. PubMed ID: 12971804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of (-)-epigallocatechin-3-gallate (EGCG)-induced cytotoxicity on astrocytes: A potential mechanism of calcium overloading-induced mitochondrial dysfunction.
    Miao Y; Sun X; Gao G; Jia X; Wu H; Chen Y; Huang L
    Toxicol In Vitro; 2019 Dec; 61():104592. PubMed ID: 31356857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.