These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 20510854)

  • 1. Relative contribution of feedforward excitatory connections to expression of ocular dominance plasticity in layer 4 of visual cortex.
    Khibnik LA; Cho KK; Bear MF
    Neuron; 2010 May; 66(4):493-500. PubMed ID: 20510854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
    Restani L; Cerri C; Pietrasanta M; Gianfranceschi L; Maffei L; Caleo M
    Neuron; 2009 Dec; 64(5):707-18. PubMed ID: 20005826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Downregulation of cortical inhibition mediates ocular dominance plasticity during the critical period.
    Ma WP; Li YT; Tao HW
    J Neurosci; 2013 Jul; 33(27):11276-80. PubMed ID: 23825430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulus for rapid ocular dominance plasticity in visual cortex.
    Rittenhouse CD; Siegler BA; Voelker CC; Shouval HZ; Paradiso MA; Bear MF
    J Neurophysiol; 2006 May; 95(5):2947-50. PubMed ID: 16481452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY; Bear MF
    Neuron; 2004 Dec; 44(6):917-23. PubMed ID: 15603735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between relative eye usage and ocular dominance shifts in cat visual cortex.
    Mower GD
    Brain Res Dev Brain Res; 2005 Jan; 154(1):147-51. PubMed ID: 15617764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S
    Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice.
    Lickey ME; Pham TA; Gordon B
    Vision Res; 2004 Dec; 44(28):3381-7. PubMed ID: 15536006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brief dark exposure restored ocular dominance plasticity in aging mice and after a cortical stroke.
    Stodieck SK; Greifzu F; Goetze B; Schmidt KF; Löwel S
    Exp Gerontol; 2014 Dec; 60():1-11. PubMed ID: 25220148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporally coherent visual stimuli boost ocular dominance plasticity.
    Matthies U; Balog J; Lehmann K
    J Neurosci; 2013 Jul; 33(29):11774-8. PubMed ID: 23864666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of GluA1 in ocular dominance plasticity in the mouse visual cortex.
    Ranson A; Sengpiel F; Fox K
    J Neurosci; 2013 Sep; 33(38):15220-5. PubMed ID: 24048851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experience-enabled enhancement of adult visual cortex function.
    Tschetter WW; Alam NM; Yee CW; Gorz M; Douglas RM; Sagdullaev B; Prusky GT
    J Neurosci; 2013 Mar; 33(12):5362-6. PubMed ID: 23516301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-modal restoration of ocular dominance plasticity in adult mice.
    Teichert M; Isstas M; Zhang Y; Bolz J
    Eur J Neurosci; 2018 Jun; 47(11):1375-1384. PubMed ID: 29761580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Cortical Mechanisms Underlying Ocular Dominance Plasticity in Adults are Not Orientationally Selective.
    Wang Y; Yao Z; He Z; Zhou J; Hess RF
    Neuroscience; 2017 Dec; 367():121-126. PubMed ID: 29111362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preserved excitatory-inhibitory balance of cortical synaptic inputs following deprived eye stimulation after a saturating period of monocular deprivation in rats.
    Iurilli G; Olcese U; Medini P
    PLoS One; 2013; 8(12):e82044. PubMed ID: 24349181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blockade of GluN2B-Containing NMDA Receptors Prevents Potentiation and Depression of Responses during Ocular Dominance Plasticity.
    Bridi MCD; Hong S; Severin D; Moreno C; Contreras A; Kirkwood A
    J Neurosci; 2024 Sep; 44(36):. PubMed ID: 39117456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of Rho GTPases triggers structural remodeling and functional plasticity in the adult rat visual cortex.
    Cerri C; Fabbri A; Vannini E; Spolidoro M; Costa M; Maffei L; Fiorentini C; Caleo M
    J Neurosci; 2011 Oct; 31(42):15163-72. PubMed ID: 22016550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lifelong learning: ocular dominance plasticity in mouse visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Curr Opin Neurobiol; 2006 Aug; 16(4):451-9. PubMed ID: 16837188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.