These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20510905)

  • 1. A urea biosensor based on pH-sensitive Sm2TiO5 electrolyte-insulator-semiconductor.
    Pan TM; Huang MD; Lin WY; Wu MH
    Anal Chim Acta; 2010 Jun; 669(1-2):68-74. PubMed ID: 20510905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High dielectric constant PrY(x)O(y) sensing films electrolyte-insulator-semiconductor pH-sensor for the detection of urea.
    Wu MH; Lee CD; Pan TM
    Anal Chim Acta; 2009 Sep; 651(1):36-41. PubMed ID: 19733732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural properties and sensing performance of high-k Nd2TiO5 thin layer-based electrolyte-insulator-semiconductor for pH detection and urea biosensing.
    Pan TM; Lin JC; Wu MH; Lai CS
    Biosens Bioelectron; 2009 May; 24(9):2864-70. PubMed ID: 19297144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and sensing properties of high-k PrTiO3 sensing membranes for pH-ISFET applications.
    Pan TM; Liao KM
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):471-6. PubMed ID: 19272929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-κ GdTixOy sensing membrane-based electrolyte-insulator-semiconductor with magnetic nanoparticles as enzyme carriers for protein contamination-free glucose biosensing.
    Wu MH; Yang HW; Hua MY; Peng YB; Pan TM
    Biosens Bioelectron; 2013 Sep; 47():99-105. PubMed ID: 23567628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free detection of DNA using novel organic-based electrolyte-insulator-semiconductor.
    Lin TW; Kekuda D; Chu CW
    Biosens Bioelectron; 2010 Aug; 25(12):2706-10. PubMed ID: 20483584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing and Impedance Characteristics of YbTaO
    Pan TM; Huang YS; Her JL
    Sci Rep; 2018 Aug; 8(1):12902. PubMed ID: 30150683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection.
    Siqueira JR; Molinnus D; Beging S; Schöning MJ
    Anal Chem; 2014 Jun; 86(11):5370-5. PubMed ID: 24814256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer.
    Siqueira JR; Abouzar MH; Poghossian A; Zucolotto V; Oliveira ON; Schöning MJ
    Biosens Bioelectron; 2009 Oct; 25(2):497-501. PubMed ID: 19651505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison Between Performances of In
    Lin CF; Kao CH; Lin CY; Liu CS; Liu YW
    Sci Rep; 2019 Feb; 9(1):3078. PubMed ID: 30816160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free detection of rheumatoid factor using YbYxOy electrolyte-insulator-semiconductor devices.
    Pan TM; Lin TW; Chen CY
    Anal Chim Acta; 2015 Sep; 891():304-11. PubMed ID: 26388391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A potentiometric sensor designed on the basis of urease immobilized in polyelectrolyte microcapsules].
    Ternovskiĭ VI; Chernokhvostov IuV; Fomkina MG; Montrel' MM
    Biofizika; 2007; 52(5):825-9. PubMed ID: 17969915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of biosensor for glucose estimation by ion sensitive field effect technique.
    V JT; Vaya PR; Singh M
    Indian J Exp Biol; 1995 Oct; 33(10):745-8. PubMed ID: 8575805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The light-addressable potentiometric sensor for multi-ion sensing and imaging.
    Yoshinobu T; Iwasaki H; Ui Y; Furuichi K; Ermolenko Y; Mourzina Y; Wagner T; Näther N; Schöning MJ
    Methods; 2005 Sep; 37(1):94-102. PubMed ID: 16199169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and characterization of an all-solid-state potentiometric biosensor array microfluidic device for multiple ion analysis.
    Liao WY; Weng CH; Lee GB; Chou TC
    Lab Chip; 2006 Oct; 6(10):1362-8. PubMed ID: 17102850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Array-based titanium dioxide biosensors for ratiometric determination of glucose, glutamate and urea.
    Doong RA; Shih HM
    Biosens Bioelectron; 2010 Feb; 25(6):1439-46. PubMed ID: 19954963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulator semiconductor structures coated with biodegradable latexes as encapsulation matrix for urease.
    Barhoumi H; Maaref A; Rammah M; Martelet C; Jaffrezic-Renault N; Mousty C; Cosnier S; Perez E; Rico-Lattes I
    Biosens Bioelectron; 2005 May; 20(11):2318-23. PubMed ID: 15797333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Properties and Sensing Performance of CeY
    Pan TM; Wang CW; Chen CY
    Sci Rep; 2017 Jun; 7(1):2945. PubMed ID: 28592824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays.
    Kafi AK; Wu G; Chen A
    Biosens Bioelectron; 2008 Dec; 24(4):566-71. PubMed ID: 18640021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Sensitive Magnesium-Doped ZnO Nanorod pH Sensors Based on Electrolyte-Insulator-Semiconductor (EIS) Sensors.
    Al-Khalqi EM; Abdul Hamid MA; Al-Hardan NH; Keng LK
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.