These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 2051139)

  • 1. Effect of imposed head vibration on the stability and waveform of flagellar beating in sea urchin spermatozoa.
    Shingyoji C; Gibbons IR; Murakami A; Takahashi K
    J Exp Biol; 1991 Mar; 156():63-80. PubMed ID: 2051139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of beat frequency on the velocity of microtubule sliding in reactivated sea urchin sperm flagella under imposed head vibration.
    Shingyoji C; Yoshimura K; Eshel D; Takahashi K; Gibbons IR
    J Exp Biol; 1995 Mar; 198(Pt 3):645-53. PubMed ID: 7714454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium regulation of microtubule sliding in reactivated sea urchin sperm flagella.
    Bannai H; Yoshimura M; Takahashi K; Shingyoji C
    J Cell Sci; 2000 Mar; 113 ( Pt 5)():831-9. PubMed ID: 10671372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotating the plane of imposed vibration can rotate the plane of flagellar beating in sea-urchin sperm without twisting the axoneme.
    Shingyoji C; Katada J; Takahashi K; Gibbons IR
    J Cell Sci; 1991 Feb; 98 ( Pt 2)():175-81. PubMed ID: 2055955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient behavior of sea urchin sperm flagella following an abrupt change in beat frequency.
    Eshel D; Shingyoji C; Yoshimura K; Gibbons BH; Gibbons IR; Takahashi K
    J Exp Biol; 1990 Sep; 152():441-51. PubMed ID: 2230640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory mechanisms of sperm flagellar motility by metachronal and synchronous sliding of doublet microtubules.
    Takei GL; Fujinoki M; Yoshida K; Ishijima S
    Mol Hum Reprod; 2017 Dec; 23(12):817-826. PubMed ID: 29040653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous recovery after experimental manipulation of the plane of beat in sperm flagella.
    Gibbons IR; Shingyoji C; Murakami A; Takahashi K
    Nature; 1987 Jan 22-28; 325(6102):351-2. PubMed ID: 3808030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. External mechanical control of the timing of bend initiation in sea urchin sperm flagella.
    Eshel D; Gibbons IR
    Cell Motil Cytoskeleton; 1989; 14(3):416-23. PubMed ID: 2582499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient flagellar waveforms during intermittent swimming in sea urchin sperm. I. Wave parameters.
    Gibbons IR; Gibbons BH
    J Muscle Res Cell Motil; 1980 Mar; 1(1):31-59. PubMed ID: 7229022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the regulation of dynein activity during flagellar motility.
    Shingyoji C
    Methods Enzymol; 2013; 524():147-69. PubMed ID: 23498739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarity in spontaneous unwinding after prior rotation of the flagellar beat plane in sea-urchin spermatozoa.
    Takahashi K; Shingyoji C; Katada J; Eshel D; Gibbons IR
    J Cell Sci; 1991 Feb; 98 ( Pt 2)():183-9. PubMed ID: 2055956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-induced asymmetrical beating of triton-demembranated sea urchin sperm flagella.
    Brokaw CJ
    J Cell Biol; 1979 Aug; 82(2):401-11. PubMed ID: 479307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The velocity of microtubule sliding: its stability and load dependency.
    Ishijima S
    Cell Motil Cytoskeleton; 2007 Nov; 64(11):809-13. PubMed ID: 17685439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperactivation is the mode conversion from constant-curvature beating to constant-frequency beating under a constant rate of microtubule sliding.
    Ohmuro J; Ishijima S
    Mol Reprod Dev; 2006 Nov; 73(11):1412-21. PubMed ID: 16894536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical stimulation of starfish sperm flagella.
    Okuno M; Hiramoto Y
    J Exp Biol; 1976 Oct; 65(2):401-13. PubMed ID: 1003087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for an inequality in the forces that generate principal and reverse bends in sperm flagella.
    Eshel D; Shingyoji C; Yoshimura K; Gibbons IR; Takahashi K
    J Cell Sci; 1991 Sep; 100 ( Pt 1)():213-8. PubMed ID: 1795026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The phase of sperm flagellar beating is not conserved over a brief imposed interruption.
    Eshel D; Shingyoji C; Yoshimura K; Gibbons IR; Takahashi K
    Exp Cell Res; 1992 Oct; 202(2):552-5. PubMed ID: 1397107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital image analysis of the flagellar beat of activated and hyperactivated suncus spermatozoa.
    Kaneko T; Mōri T; Ishijima S
    Mol Reprod Dev; 2007 Apr; 74(4):478-85. PubMed ID: 17034047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital image analysis of flagellar beating and microtubule sliding of activated and hyperactivated sperm flagella.
    Ishijima S
    Soc Reprod Fertil Suppl; 2007; 65():327-30. PubMed ID: 17644972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the dynein inhibitor ciliobrevin on the flagellar motility of sea urchin spermatozoa.
    Wada Y; Baba SA; Kamimura S
    Cytoskeleton (Hoboken); 2015 Apr; 72(4):182-92. PubMed ID: 25809136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.