These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20511435)

  • 1. Ambulatory assistive devices in orthopaedics: uses and modifications.
    Levin P
    J Am Acad Orthop Surg; 2010 Jun; 18(6):315-6. PubMed ID: 20511435
    [No Abstract]   [Full Text] [Related]  

  • 2. Ambulatory assistive devices in orthopaedics: uses and modifications.
    Faruqui SR; Jaeblon T
    J Am Acad Orthop Surg; 2010 Jan; 18(1):41-50. PubMed ID: 20044491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial weight-bearing gait using conventional assistive devices.
    Youdas JW; Kotajarvi BJ; Padgett DJ; Kaufman KR
    Arch Phys Med Rehabil; 2005 Mar; 86(3):394-8. PubMed ID: 15759217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leg muscle activity during walking with assistive devices at varying levels of weight bearing.
    Clark BC; Manini TM; Ordway NR; Ploutz-Snyder LL
    Arch Phys Med Rehabil; 2004 Sep; 85(9):1555-60. PubMed ID: 15375835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of walking devices on kinematics in patients with spastic bilateral cerebral palsy.
    Krautwurst BK; Dreher T; Wolf SI
    Gait Posture; 2016 May; 46():184-7. PubMed ID: 27131199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambulatory assistive devices and walking performance in patients with incomplete spinal cord injury.
    Saensook W; Phonthee S; Srisim K; Mato L; Wattanapan P; Amatachaya S
    Spinal Cord; 2014 Mar; 52(3):216-9. PubMed ID: 24126853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. May I Keep an Eye on Your Training? Gait Assessment Assisted by a Mobile Robot.
    Scheidig A; Jaeschke B; Schuetz B; Trinh TQ; Vorndran A; Mayfarth A; Gross HM
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():701-708. PubMed ID: 31374713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and validation of GCH System 1.0 which measures the weight-bearing exerted on forearm crutches during aided gait.
    Chamorro Moriana G; Roldán JR; Rejano JJ; Martínez RC; Serrano CS
    Gait Posture; 2013 Apr; 37(4):564-9. PubMed ID: 23218725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy expenditure of ambulation using the Sure-Gait crutch and the standard axillary crutch.
    Annesley AL; Almada-Norfleet M; Arnall DA; Cornwall MW
    Phys Ther; 1990 Jan; 70(1):18-23. PubMed ID: 2294527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The gait of patients with full weightbearing capacity after hip prosthesis implantation on the treadmill with partial body weight support, during assisted walking and without crutches].
    Hesse S; Sonntag D; Bardeleben A; Käding M; Roggenbruck C; Conradi E
    Z Orthop Ihre Grenzgeb; 1999; 137(3):265-72. PubMed ID: 10441834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The energy expenditure of non-weight bearing crutch walking on the level and ascending stairs.
    Moran J; Murphy A; Murphy D; Austin A; Moran D; Cronin C; Guinan E; Hussey J
    Gait Posture; 2015 Jun; 42(1):23-6. PubMed ID: 25891530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orthotics and assistive devices in the treatment of upper and lower limb osteoarthritis: an update.
    Yonclas PP; Nadler RR; Moran ME; Kepler KL; Napolitano E
    Am J Phys Med Rehabil; 2006 Nov; 85(11 Suppl):S82-97. PubMed ID: 17079983
    [No Abstract]   [Full Text] [Related]  

  • 13. Geriatric assistive devices.
    Bradley SM; Hernandez CR
    Am Fam Physician; 2011 Aug; 84(4):405-11. PubMed ID: 21842786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wheeled assistive device for load carriage - the effects on human gait and biomechanics.
    Ketko I; Plotnik M; Yanovich R; Gefen A; Heled Y
    Ergonomics; 2017 Oct; 60(10):1415-1424. PubMed ID: 28393680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of a Shock Absorber on Spatiotemporal Parameters and Ground Reaction Forces of Forearm Crutch Ambulation.
    Dooley A; Ma Y; Zhang Y
    Assist Technol; 2015; 27(4):257-62. PubMed ID: 26151882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the Easy Strutter Functional Orthosis System and axillary crutches during modified 3-point gait.
    Nyland J; Bernasek T; Markee B; Dundore C
    J Rehabil Res Dev; 2004 Mar; 41(2):195-206. PubMed ID: 15558373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treadmill training with partial body-weight support after total hip arthroplasty: a randomized controlled trial.
    Hesse S; Werner C; Seibel H; von Frankenberg S; Kappel EM; Kirker S; Käding M
    Arch Phys Med Rehabil; 2003 Dec; 84(12):1767-73. PubMed ID: 14669181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy Efficiency in Children With Myelomeningocele During Acute Use of Assistive Devices: A Pilot Study.
    Sansom JK; Ulrich BD
    Adapt Phys Activ Q; 2018 Jan; 35(1):57-75. PubMed ID: 29313712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assistive devices for gait in Parkinson's disease.
    Constantinescu R; Leonard C; Deeley C; Kurlan R
    Parkinsonism Relat Disord; 2007 Apr; 13(3):133-8. PubMed ID: 16914362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some biomechanical aspects of crutch and cane walking: the relationship between forward rate of progression, symmetry, and efficiency--a case report.
    McDonough AL; Razza-Doherty M
    Clin Podiatr Med Surg; 1988 Jul; 5(3):677-93. PubMed ID: 3395953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.