BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20511543)

  • 1. Tryptophan/kynurenine metabolism in human leukocytes is independent of superoxide and is fully maintained in chronic granulomatous disease.
    De Ravin SS; Zarember KA; Long-Priel D; Chan KC; Fox SD; Gallin JI; Kuhns DB; Malech HL
    Blood; 2010 Sep; 116(10):1755-60. PubMed ID: 20511543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease.
    Romani L; Fallarino F; De Luca A; Montagnoli C; D'Angelo C; Zelante T; Vacca C; Bistoni F; Fioretti MC; Grohmann U; Segal BH; Puccetti P
    Nature; 2008 Jan; 451(7175):211-5. PubMed ID: 18185592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intact indoleamine 2,3-dioxygenase activity in human chronic granulomatous disease.
    Jürgens B; Fuchs D; Reichenbach J; Heitger A
    Clin Immunol; 2010 Oct; 137(1):1-4. PubMed ID: 20570568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four novel mutations in the gene encoding gp91-phox of human NADPH oxidase: consequences for oxidase assembly.
    Leusen JH; Meischl C; Eppink MH; Hilarius PM; de Boer M; Weening RS; Ahlin A; Sanders L; Goldblatt D; Skopczynska H; Bernatowska E; Palmblad J; Verhoeven AJ; van Berkel WJ; Roos D
    Blood; 2000 Jan; 95(2):666-73. PubMed ID: 10627478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two X-linked chronic granulomatous disease patients with unusual NADPH oxidase properties.
    Wolach B; Broides A; Zeeli T; Gavrieli R; de Boer M; van Leeuwen K; Levy J; Roos D
    J Clin Immunol; 2011 Aug; 31(4):560-6. PubMed ID: 21604087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of NAD(P)H oxidase by tryptophan-derived 3-hydroxykynurenine accelerates endothelial apoptosis and dysfunction in vivo.
    Wang Q; Zhang M; Ding Y; Wang Q; Zhang W; Song P; Zou MH
    Circ Res; 2014 Jan; 114(3):480-92. PubMed ID: 24281189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monocyte/macrophage-specific NADPH oxidase contributes to antimicrobial host defense in X-CGD.
    Okura Y; Yamada M; Kuribayashi F; Kobayashi I; Ariga T
    J Clin Immunol; 2015 Feb; 35(2):158-67. PubMed ID: 25666294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dose-dependent enhancements by interferon-gamma on functional responses of neutrophils from chronic granulomatous disease patients.
    Ahlin A; Elinder G; Palmblad J
    Blood; 1997 May; 89(9):3396-401. PubMed ID: 9129047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation at histidine 338 of gp91(phox) depletes FAD and affects expression of cytochrome b558 of the human NADPH oxidase.
    Yoshida LS; Saruta F; Yoshikawa K; Tatsuzawa O; Tsunawaki S
    J Biol Chem; 1998 Oct; 273(43):27879-86. PubMed ID: 9774399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in-frame triplet deletion within the gp91-phox gene in an adult X-linked chronic granulomatous disease patient with residual NADPH-oxidase activity.
    Jendrossek V; Ritzel A; Neubauer B; Heyden S; Gahr M
    Eur J Haematol; 1997 Feb; 58(2):78-85. PubMed ID: 9111587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic paradigm for evaluation of male patients with chronic granulomatous disease, based on the dihydrorhodamine 123 assay.
    Jirapongsananuruk O; Malech HL; Kuhns DB; Niemela JE; Brown MR; Anderson-Cohen M; Fleisher TA
    J Allergy Clin Immunol; 2003 Feb; 111(2):374-9. PubMed ID: 12589359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Third-generation, self-inactivating gp91(phox) lentivector corrects the oxidase defect in NOD/SCID mouse-repopulating peripheral blood-mobilized CD34+ cells from patients with X-linked chronic granulomatous disease.
    Roesler J; Brenner S; Bukovsky AA; Whiting-Theobald N; Dull T; Kelly M; Civin CI; Malech HL
    Blood; 2002 Dec; 100(13):4381-90. PubMed ID: 12393624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of NADPH oxidase in granulocytic cells expressing a delta488-497 gp91(phox) deletion mutant.
    Yu L; Cross AR; Zhen L; Dinauer MC
    Blood; 1999 Oct; 94(7):2497-504. PubMed ID: 10498623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass spectrometric measurement of urinary kynurenine-to-tryptophan ratio in children with and without urinary tract infection.
    Yarbrough ML; Briden KE; Mitsios JV; Weindel AL; Terrill CM; Hunstad DA; Dietzen DJ
    Clin Biochem; 2018 Jun; 56():83-88. PubMed ID: 29679555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low interleukin-17A production in response to fungal pathogens in patients with chronic granulomatous disease.
    Smeekens SP; Henriet SS; Gresnigt MS; Joosten LA; Hermans PW; Netea MG; Warris A; van de Veerdonk FL
    J Interferon Cytokine Res; 2012 Apr; 32(4):159-68. PubMed ID: 22191467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-linked chronic granulomatous disease: correction of NADPH oxidase defect by retrovirus-mediated expression of gp91-phox.
    Porter CD; Parkar MH; Levinsky RJ; Collins MK; Kinnon C
    Blood; 1993 Oct; 82(7):2196-202. PubMed ID: 8400270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of autosomal recessive chronic granulomatous disease caused by a defect of the nicotinamide adenine dinucleotide phosphate (reduced form) oxidase component p67-phox.
    Patiño PJ; Rae J; Noack D; Erickson R; Ding J; de Olarte DG; Curnutte JT
    Blood; 1999 Oct; 94(7):2505-14. PubMed ID: 10498624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hematologically important mutations: X-linked chronic granulomatous disease (third update).
    Roos D; Kuhns DB; Maddalena A; Roesler J; Lopez JA; Ariga T; Avcin T; de Boer M; Bustamante J; Condino-Neto A; Di Matteo G; He J; Hill HR; Holland SM; Kannengiesser C; Köker MY; Kondratenko I; van Leeuwen K; Malech HL; Marodi L; Nunoi H; Stasia MJ; Ventura AM; Witwer CT; Wolach B; Gallin JI
    Blood Cells Mol Dis; 2010 Oct; 45(3):246-65. PubMed ID: 20729109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interferon-gamma improves splicing efficiency of CYBB gene transcripts in an interferon-responsive variant of chronic granulomatous disease due to a splice site consensus region mutation.
    Condino-Neto A; Newburger PE
    Blood; 2000 Jun; 95(11):3548-54. PubMed ID: 10828042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Missense mutations in the gp91-phox gene encoding cytochrome b558 in patients with cytochrome b positive and negative X-linked chronic granulomatous disease.
    Kaneda M; Sakuraba H; Ohtake A; Nishida A; Kiryu C; Kakinuma K
    Blood; 1999 Mar; 93(6):2098-104. PubMed ID: 10068684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.