These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 2051189)

  • 1. Coding of temporal parameters of complex sounds by frog auditory nerve fibers.
    Feng AS; Hall JC; Siddique S
    J Neurophysiol; 1991 Mar; 65(3):424-45. PubMed ID: 2051189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal coding in the frog auditory midbrain: the influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli.
    Gooler DM; Feng AS
    J Neurophysiol; 1992 Jan; 67(1):1-22. PubMed ID: 1552312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity to amplitude modulated sounds in the anuran auditory nervous system.
    Rose GJ; Capranica RR
    J Neurophysiol; 1985 Feb; 53(2):446-65. PubMed ID: 3872351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal processing in the dorsal medullary nucleus of the Northern leopard frog (Rana pipiens pipiens).
    Hall JC; Feng AS
    J Neurophysiol; 1991 Sep; 66(3):955-73. PubMed ID: 1661327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of gaps in sinusoids by frog auditory nerve fibers: importance in AM coding.
    Feng AS; Lin WY; Sun L
    J Comp Physiol A; 1994 Nov; 175(5):531-46. PubMed ID: 7965920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing of behaviorally relevant temporal parameters of acoustic stimuli by single neurons in the superior olivary nucleus of the leopard frog.
    Condon CJ; Chang SH; Feng AS
    J Comp Physiol A; 1991 Jun; 168(6):709-25. PubMed ID: 1920165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cochlear nerve fiber responses to amplitude-modulated stimuli: variations with spontaneous rate and other response characteristics.
    Cooper NP; Robertson D; Yates GK
    J Neurophysiol; 1993 Jul; 70(1):370-86. PubMed ID: 8395584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model.
    Carney LH; Yin TC
    J Neurophysiol; 1988 Nov; 60(5):1653-77. PubMed ID: 3199176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-locked response characteristics of single neurons in the frog "cochlear nucleus" to steady-state and sinusoidal-amplitude-modulated tones.
    Feng AS; Lin WY
    J Neurophysiol; 1994 Nov; 72(5):2209-21. PubMed ID: 7884454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encoding of amplitude modulation in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 May; 71(5):1797-825. PubMed ID: 8064349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of anuran auditory periphery reveals frequency-dependent adaptation to be a contributing mechanism for two-tone suppression and amplitude modulation coding.
    Wotton JM; Ferragamo MJ
    Hear Res; 2011 Oct; 280(1-2):109-21. PubMed ID: 21565263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodicity extraction in the anuran auditory nerve. II: Phase and temporal fine structure.
    Simmons AM; Reese G; Ferragamo M
    J Acoust Soc Am; 1993 Jun; 93(6):3374-89. PubMed ID: 8326064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing of amplitude-modulated signals that mimic echoes from fluttering targets in the inferior colliculus of the little brown bat, Myotis lucifugus.
    Condon CJ; White KR; Feng AS
    J Neurophysiol; 1994 Feb; 71(2):768-84. PubMed ID: 8176439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal encoding and transmitting of amplitude and frequency modulations in dorsal cochlear nucleus.
    Zhao HB; Liang ZA
    Hear Res; 1997 Apr; 106(1-2):83-94. PubMed ID: 9112108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Envelope coding in the lateral superior olive. III. Comparison with afferent pathways.
    Joris PX; Yin TC
    J Neurophysiol; 1998 Jan; 79(1):253-69. PubMed ID: 9425196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-spike timing of auditory-nerve fibers and comparison with auditory cortex.
    Heil P; Irvine DR
    J Neurophysiol; 1997 Nov; 78(5):2438-54. PubMed ID: 9356395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch.
    Cariani PA; Delgutte B
    J Neurophysiol; 1996 Sep; 76(3):1717-34. PubMed ID: 8890287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural encoding of amplitude modulation within the auditory midbrain of squirrel monkeys.
    Müller-Preuss P; Flachskamm C; Bieser A
    Hear Res; 1994 Nov; 80(2):197-208. PubMed ID: 7896578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory cortical onset responses revisited. II. Response strength.
    Heil P
    J Neurophysiol; 1997 May; 77(5):2642-60. PubMed ID: 9163381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of DCN-PVCN neurons and auditory nerve fibers in unanesthetized decerebrate cats to AM and pure tones: analysis with autocorrelation/power-spectrum.
    Kim DO; Sirianni JG; Chang SO
    Hear Res; 1990 Apr; 45(1-2):95-113. PubMed ID: 2345121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.