These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 20512114)
1. Structural insight into dynamic bypass of the major cisplatin-DNA adduct by Y-family polymerase Dpo4. Wong JH; Brown JA; Suo Z; Blum P; Nohmi T; Ling H EMBO J; 2010 Jun; 29(12):2059-69. PubMed ID: 20512114 [TBL] [Abstract][Full Text] [Related]
2. Structural and functional analysis of Sulfolobus solfataricus Y-family DNA polymerase Dpo4-catalyzed bypass of the malondialdehyde-deoxyguanosine adduct. Eoff RL; Stafford JB; Szekely J; Rizzo CJ; Egli M; Guengerich FP; Marnett LJ Biochemistry; 2009 Aug; 48(30):7079-88. PubMed ID: 19492857 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic studies of the bypass of a bulky single-base lesion catalyzed by a Y-family DNA polymerase. Sherrer SM; Brown JA; Pack LR; Jasti VP; Fowler JD; Basu AK; Suo Z J Biol Chem; 2009 Mar; 284(10):6379-88. PubMed ID: 19124465 [TBL] [Abstract][Full Text] [Related]
4. Structure-function relationships in miscoding by Sulfolobus solfataricus DNA polymerase Dpo4: guanine N2,N2-dimethyl substitution produces inactive and miscoding polymerase complexes. Zhang H; Eoff RL; Kozekov ID; Rizzo CJ; Egli M; Guengerich FP J Biol Chem; 2009 Jun; 284(26):17687-99. PubMed ID: 19542237 [TBL] [Abstract][Full Text] [Related]
5. Effect of N2-guanyl modifications on early steps in catalysis of polymerization by Sulfolobus solfataricus P2 DNA polymerase Dpo4 T239W. Zhang H; Guengerich FP J Mol Biol; 2010 Feb; 395(5):1007-18. PubMed ID: 19969000 [TBL] [Abstract][Full Text] [Related]
6. Molecular basis of selectivity of nucleoside triphosphate incorporation opposite O6-benzylguanine by sulfolobus solfataricus DNA polymerase Dpo4: steady-state and pre-steady-state kinetics and x-ray crystallography of correct and incorrect pairing. Eoff RL; Angel KC; Egli M; Guengerich FP J Biol Chem; 2007 May; 282(18):13573-84. PubMed ID: 17337730 [TBL] [Abstract][Full Text] [Related]
7. Versatility of Y-family Sulfolobus solfataricus DNA polymerase Dpo4 in translesion synthesis past bulky N2-alkylguanine adducts. Zhang H; Eoff RL; Kozekov ID; Rizzo CJ; Egli M; Guengerich FP J Biol Chem; 2009 Feb; 284(6):3563-76. PubMed ID: 19059910 [TBL] [Abstract][Full Text] [Related]
8. Structural Basis for Human DNA Polymerase Kappa to Bypass Cisplatin Intrastrand Cross-Link (Pt-GG) Lesion as an Efficient and Accurate Extender. Jha V; Ling H J Mol Biol; 2018 May; 430(11):1577-1589. PubMed ID: 29715472 [TBL] [Abstract][Full Text] [Related]
9. Increased Processivity, Misincorporation, and Nucleotide Incorporation Efficiency in Sulfolobus solfataricus Dpo4 Thumb Domain Mutants. Wang L; Liang C; Wu J; Liu L; Tyo KEJ Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28710267 [TBL] [Abstract][Full Text] [Related]
10. Conformational Flexibility of the Benzyl-Guanine Adduct in a Bypass Polymerase Active Site Permits Replication: Insights from Molecular Dynamics Simulations. Wilson KA; Wetmore SD Chem Res Toxicol; 2017 Nov; 30(11):2013-2022. PubMed ID: 28810119 [TBL] [Abstract][Full Text] [Related]
11. A method to accurately quantitate intensities of (32)P-DNA bands when multiple bands appear in a single lane of a gel is used to study dNTP insertion opposite a benzo[a]pyrene-dG adduct by Sulfolobus DNA polymerases Dpo4 and Dbh. Sholder G; Loechler EL DNA Repair (Amst); 2015 Jan; 25():97-103. PubMed ID: 25497330 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Ling H; Boudsocq F; Woodgate R; Yang W Cell; 2001 Oct; 107(1):91-102. PubMed ID: 11595188 [TBL] [Abstract][Full Text] [Related]
13. Visualizing sequence-governed nucleotide selectivities and mutagenic consequences through a replicative cycle: processing of a bulky carcinogen N2-dG lesion in a Y-family DNA polymerase. Xu P; Oum L; Lee YC; Geacintov NE; Broyde S Biochemistry; 2009 Jun; 48(22):4677-90. PubMed ID: 19364137 [TBL] [Abstract][Full Text] [Related]
14. Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta. Alt A; Lammens K; Chiocchini C; Lammens A; Pieck JC; Kuch D; Hopfner KP; Carell T Science; 2007 Nov; 318(5852):967-70. PubMed ID: 17991862 [TBL] [Abstract][Full Text] [Related]
15. O6-alkylguanine postlesion DNA synthesis is correct with the right complement of hydrogen bonding. Gahlon HL; Boby ML; Sturla SJ ACS Chem Biol; 2014 Dec; 9(12):2807-14. PubMed ID: 25259614 [TBL] [Abstract][Full Text] [Related]
16. Promutagenic bypass of 7,8-dihydro-8-oxoadenine by translesion synthesis DNA polymerase Dpo4. Jung H; Lee S Biochem J; 2020 Aug; 477(15):2859-2871. PubMed ID: 32686822 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen bonding of 7,8-dihydro-8-oxodeoxyguanosine with a charged residue in the little finger domain determines miscoding events in Sulfolobus solfataricus DNA polymerase Dpo4. Eoff RL; Irimia A; Angel KC; Egli M; Guengerich FP J Biol Chem; 2007 Jul; 282(27):19831-43. PubMed ID: 17468100 [TBL] [Abstract][Full Text] [Related]
18. Kinetic basis for the differing response to an oxidative lesion by a replicative and a lesion bypass DNA polymerase from Sulfolobus solfataricus. Maxwell BA; Suo Z Biochemistry; 2012 Apr; 51(16):3485-96. PubMed ID: 22471521 [TBL] [Abstract][Full Text] [Related]
19. Efficiency of extension of mismatched primer termini across from cisplatin and oxaliplatin adducts by human DNA polymerases beta and eta in vitro. Bassett E; Vaisman A; Havener JM; Masutani C; Hanaoka F; Chaney SG Biochemistry; 2003 Dec; 42(48):14197-206. PubMed ID: 14640687 [TBL] [Abstract][Full Text] [Related]
20. Subtle but variable conformational rearrangements in the replication cycle of Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) may accommodate lesion bypass. Wang Y; Arora K; Schlick T Protein Sci; 2006 Jan; 15(1):135-51. PubMed ID: 16322565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]