These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 20512119)

  • 1. Principles of stop-codon reading on the ribosome.
    Sund J; Andér M; Aqvist J
    Nature; 2010 Jun; 465(7300):947-50. PubMed ID: 20512119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-Based Energetics of Stop Codon Recognition by Eukaryotic Release Factor.
    Kumar A; Basu D; Satpati P
    J Chem Inf Model; 2017 Sep; 57(9):2321-2328. PubMed ID: 28825483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stop codon recognition and interactions with peptide release factor RF3 of truncated and chimeric RF1 and RF2 from Escherichia coli.
    Mora L; Zavialov A; Ehrenberg M; Buckingham RH
    Mol Microbiol; 2003 Dec; 50(5):1467-76. PubMed ID: 14651631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for stop codon recognition in eukaryotes.
    Brown A; Shao S; Murray J; Hegde RS; Ramakrishnan V
    Nature; 2015 Aug; 524(7566):493-496. PubMed ID: 26245381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into translational termination from the structure of RF2 bound to the ribosome.
    Weixlbaumer A; Jin H; Neubauer C; Voorhees RM; Petry S; Kelley AC; Ramakrishnan V
    Science; 2008 Nov; 322(5903):953-6. PubMed ID: 18988853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of stop codon recognition by release factor 1.
    Hetrick B; Lee K; Joseph S
    Biochemistry; 2009 Dec; 48(47):11178-84. PubMed ID: 19874047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coevolution between Stop Codon Usage and Release Factors in Bacterial Species.
    Wei Y; Wang J; Xia X
    Mol Biol Evol; 2016 Sep; 33(9):2357-67. PubMed ID: 27297468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of the amber UAG stop codon by release factor RF1.
    Korostelev A; Zhu J; Asahara H; Noller HF
    EMBO J; 2010 Aug; 29(15):2577-85. PubMed ID: 20588254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for translation termination on the 70S ribosome.
    Laurberg M; Asahara H; Korostelev A; Zhu J; Trakhanov S; Noller HF
    Nature; 2008 Aug; 454(7206):852-7. PubMed ID: 18596689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. R213I mutation in release factor 2 (RF2) is one step forward for engineering an omnipotent release factor in bacteria
    Korkmaz G; Sanyal S
    J Biol Chem; 2017 Sep; 292(36):15134-15142. PubMed ID: 28743745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three distinct peptides from the N domain of translation termination factor eRF1 surround stop codon in the ribosome.
    Bulygin KN; Khairulina YS; Kolosov PM; Ven'yaminova AG; Graifer DM; Vorobjev YN; Frolova LY; Kisselev LL; Karpova GG
    RNA; 2010 Oct; 16(10):1902-14. PubMed ID: 20688868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon.
    Petry S; Brodersen DE; Murphy FV; Dunham CM; Selmer M; Tarry MJ; Kelley AC; Ramakrishnan V
    Cell; 2005 Dec; 123(7):1255-66. PubMed ID: 16377566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural aspects of translation termination on the ribosome.
    Korostelev AA
    RNA; 2011 Aug; 17(8):1409-21. PubMed ID: 21700725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The regulatory TnaC nascent peptide preferentially inhibits release factor 2-mediated hydrolysis of peptidyl-tRNA.
    Emmanuel JS; Sengupta A; Gordon ER; Noble JT; Cruz-Vera LR
    J Biol Chem; 2019 Dec; 294(50):19224-19235. PubMed ID: 31712310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic and kinetic insights into stop codon recognition by release factor 1.
    Trappl K; Mathew MA; Joseph S
    PLoS One; 2014; 9(4):e94058. PubMed ID: 24699820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of a human translation termination complex.
    Matheisl S; Berninghausen O; Becker T; Beckmann R
    Nucleic Acids Res; 2015 Oct; 43(18):8615-26. PubMed ID: 26384426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amber (UAG) suppressors affected in UGA/UAA-specific polypeptide release factor 2 of bacteria: genetic prediction of initial binding to ribosome preceding stop codon recognition.
    Yoshimura K; Ito K; Nakamura Y
    Genes Cells; 1999 May; 4(5):253-66. PubMed ID: 10421836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tripeptide discriminator for stop codon recognition.
    Nakamura Y; Ito K
    FEBS Lett; 2002 Mar; 514(1):30-3. PubMed ID: 11904176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insights into the alternative translation termination by ArfA and RF2.
    Ma C; Kurita D; Li N; Chen Y; Himeno H; Gao N
    Nature; 2017 Jan; 541(7638):550-553. PubMed ID: 27906160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of premature translation termination on a sense codon.
    Svidritskiy E; Demo G; Korostelev AA
    J Biol Chem; 2018 Aug; 293(32):12472-12479. PubMed ID: 29941456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.