These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20512318)

  • 1. Evaluation of a two-site, three-barrier model for permeation in Ca(V)3.1 (alpha1G) T-type calcium channels: Ca (2+), Ba (2+), Mg (2+), and Na (+).
    Lopin KV; Obejero-Paz CA; Jones SW
    J Membr Biol; 2010 Jun; 235(2):131-43. PubMed ID: 20512318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permeation and gating in CaV3.1 (alpha1G) T-type calcium channels effects of Ca2+, Ba2+, Mg2+, and Na+.
    Khan N; Gray IP; Obejero-Paz CA; Jones SW
    J Gen Physiol; 2008 Aug; 132(2):223-38. PubMed ID: 18663131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fe²⁺ block and permeation of CaV3.1 (α1G) T-type calcium channels: candidate mechanism for non-transferrin-mediated Fe²⁺ influx.
    Lopin KV; Gray IP; Obejero-Paz CA; Thévenod F; Jones SW
    Mol Pharmacol; 2012 Dec; 82(6):1194-204. PubMed ID: 22973060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mg(2+) block unmasks Ca(2+)/Ba(2+) selectivity of alpha1G T-type calcium channels.
    Serrano JR; Dashti SR; Perez-Reyes E; Jones SW
    Biophys J; 2000 Dec; 79(6):3052-62. PubMed ID: 11106611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ni2+ block of CaV3.1 (alpha1G) T-type calcium channels.
    Obejero-Paz CA; Gray IP; Jones SW
    J Gen Physiol; 2008 Aug; 132(2):239-50. PubMed ID: 18663132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium and calcium channels in bovine chromaffin cells.
    Fenwick EM; Marty A; Neher E
    J Physiol; 1982 Oct; 331():599-635. PubMed ID: 6296372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane.
    Ohmori H; Yoshii M
    J Physiol; 1977 May; 267(2):429-63. PubMed ID: 17734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+ and Na+ permeability of high-threshold Ca2+ channels and their voltage-dependent block by Mg2+ ions in chick sensory neurones.
    Carbone E; Lux HD; Carabelli V; Aicardi G; Zucker H
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):1-15. PubMed ID: 9350613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity of calcium channels in rat uterine smooth muscle: interactions between sodium, calcium and barium ions.
    Jmari K; Mironneau C; Mironneau J
    J Physiol; 1987 Mar; 384():247-61. PubMed ID: 2443660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permeation and block by internal and external divalent cations of the catfish cone photoreceptor cGMP-gated channel.
    Haynes LW
    J Gen Physiol; 1995 Sep; 106(3):507-23. PubMed ID: 8786345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cd²⁺ block and permeation of CaV3.1 (α1G) T-type calcium channels: candidate mechanism for Cd²⁺ influx.
    Lopin KV; Thévenod F; Page JC; Jones SW
    Mol Pharmacol; 2012 Dec; 82(6):1183-93. PubMed ID: 22973059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic selectivity in L-type calcium channels by electrostatics and hard-core repulsion.
    Boda D; Valiskó M; Henderson D; Eisenberg B; Gillespie D; Nonner W
    J Gen Physiol; 2009 May; 133(5):497-509. PubMed ID: 19398776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single amino acid change in Ca(v)1.2 channels eliminates the permeation and gating differences between Ca(2+) and Ba(2+).
    Li Z; Wang X; Gao G; Qu D; Yu B; Huang C; Elmslie KS; Peterson BZ
    J Membr Biol; 2010 Feb; 233(1-3):23-33. PubMed ID: 20098982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental regulation of calcium channel-mediated currents in retinal glial (Müller) cells.
    Bringmann A; Schopf S; Reichenbach A
    J Neurophysiol; 2000 Dec; 84(6):2975-83. PubMed ID: 11110825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of CaV1.2 channels by Mg2+ acting at an EF-hand motif in the COOH-terminal domain.
    Brunet S; Scheuer T; Klevit R; Catterall WA
    J Gen Physiol; 2005 Oct; 126(4):311-23. PubMed ID: 16157690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage control of Ca²⁺ permeation through N-type calcium (Ca(V)2.2) channels.
    Buraei Z; Liang H; Elmslie KS
    J Gen Physiol; 2014 Sep; 144(3):207-20. PubMed ID: 25114024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-dependent inactivation of CaV1.2 channels prevents Gd3+ block: does Ca2+ block the pore of inactivated channels?
    Babich O; Matveev V; Harris AL; Shirokov R
    J Gen Physiol; 2007 Jun; 129(6):477-83. PubMed ID: 17535960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium current-dependent and voltage-dependent inactivation of calcium channels in Helix aspersa.
    Brown AM; Morimoto K; Tsuda Y; wilson DL
    J Physiol; 1981 Nov; 320():193-218. PubMed ID: 6275075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Block of CaV1.2 channels by Gd3+ reveals preopening transitions in the selectivity filter.
    Babich O; Reeves J; Shirokov R
    J Gen Physiol; 2007 Jun; 129(6):461-75. PubMed ID: 17535959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells.
    Hess P; Lansman JB; Tsien RW
    J Gen Physiol; 1986 Sep; 88(3):293-319. PubMed ID: 2428919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.