BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20512318)

  • 1. Evaluation of a two-site, three-barrier model for permeation in Ca(V)3.1 (alpha1G) T-type calcium channels: Ca (2+), Ba (2+), Mg (2+), and Na (+).
    Lopin KV; Obejero-Paz CA; Jones SW
    J Membr Biol; 2010 Jun; 235(2):131-43. PubMed ID: 20512318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permeation and gating in CaV3.1 (alpha1G) T-type calcium channels effects of Ca2+, Ba2+, Mg2+, and Na+.
    Khan N; Gray IP; Obejero-Paz CA; Jones SW
    J Gen Physiol; 2008 Aug; 132(2):223-38. PubMed ID: 18663131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fe²⁺ block and permeation of CaV3.1 (α1G) T-type calcium channels: candidate mechanism for non-transferrin-mediated Fe²⁺ influx.
    Lopin KV; Gray IP; Obejero-Paz CA; Thévenod F; Jones SW
    Mol Pharmacol; 2012 Dec; 82(6):1194-204. PubMed ID: 22973060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mg(2+) block unmasks Ca(2+)/Ba(2+) selectivity of alpha1G T-type calcium channels.
    Serrano JR; Dashti SR; Perez-Reyes E; Jones SW
    Biophys J; 2000 Dec; 79(6):3052-62. PubMed ID: 11106611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ni2+ block of CaV3.1 (alpha1G) T-type calcium channels.
    Obejero-Paz CA; Gray IP; Jones SW
    J Gen Physiol; 2008 Aug; 132(2):239-50. PubMed ID: 18663132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium and calcium channels in bovine chromaffin cells.
    Fenwick EM; Marty A; Neher E
    J Physiol; 1982 Oct; 331():599-635. PubMed ID: 6296372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane.
    Ohmori H; Yoshii M
    J Physiol; 1977 May; 267(2):429-63. PubMed ID: 17734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+ and Na+ permeability of high-threshold Ca2+ channels and their voltage-dependent block by Mg2+ ions in chick sensory neurones.
    Carbone E; Lux HD; Carabelli V; Aicardi G; Zucker H
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):1-15. PubMed ID: 9350613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity of calcium channels in rat uterine smooth muscle: interactions between sodium, calcium and barium ions.
    Jmari K; Mironneau C; Mironneau J
    J Physiol; 1987 Mar; 384():247-61. PubMed ID: 2443660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permeation and block by internal and external divalent cations of the catfish cone photoreceptor cGMP-gated channel.
    Haynes LW
    J Gen Physiol; 1995 Sep; 106(3):507-23. PubMed ID: 8786345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cd²⁺ block and permeation of CaV3.1 (α1G) T-type calcium channels: candidate mechanism for Cd²⁺ influx.
    Lopin KV; Thévenod F; Page JC; Jones SW
    Mol Pharmacol; 2012 Dec; 82(6):1183-93. PubMed ID: 22973059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic selectivity in L-type calcium channels by electrostatics and hard-core repulsion.
    Boda D; Valiskó M; Henderson D; Eisenberg B; Gillespie D; Nonner W
    J Gen Physiol; 2009 May; 133(5):497-509. PubMed ID: 19398776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single amino acid change in Ca(v)1.2 channels eliminates the permeation and gating differences between Ca(2+) and Ba(2+).
    Li Z; Wang X; Gao G; Qu D; Yu B; Huang C; Elmslie KS; Peterson BZ
    J Membr Biol; 2010 Feb; 233(1-3):23-33. PubMed ID: 20098982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental regulation of calcium channel-mediated currents in retinal glial (Müller) cells.
    Bringmann A; Schopf S; Reichenbach A
    J Neurophysiol; 2000 Dec; 84(6):2975-83. PubMed ID: 11110825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of CaV1.2 channels by Mg2+ acting at an EF-hand motif in the COOH-terminal domain.
    Brunet S; Scheuer T; Klevit R; Catterall WA
    J Gen Physiol; 2005 Oct; 126(4):311-23. PubMed ID: 16157690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage control of Ca²⁺ permeation through N-type calcium (Ca(V)2.2) channels.
    Buraei Z; Liang H; Elmslie KS
    J Gen Physiol; 2014 Sep; 144(3):207-20. PubMed ID: 25114024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-dependent inactivation of CaV1.2 channels prevents Gd3+ block: does Ca2+ block the pore of inactivated channels?
    Babich O; Matveev V; Harris AL; Shirokov R
    J Gen Physiol; 2007 Jun; 129(6):477-83. PubMed ID: 17535960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium current-dependent and voltage-dependent inactivation of calcium channels in Helix aspersa.
    Brown AM; Morimoto K; Tsuda Y; wilson DL
    J Physiol; 1981 Nov; 320():193-218. PubMed ID: 6275075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Block of CaV1.2 channels by Gd3+ reveals preopening transitions in the selectivity filter.
    Babich O; Reeves J; Shirokov R
    J Gen Physiol; 2007 Jun; 129(6):461-75. PubMed ID: 17535959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells.
    Hess P; Lansman JB; Tsien RW
    J Gen Physiol; 1986 Sep; 88(3):293-319. PubMed ID: 2428919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.