These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
383 related articles for article (PubMed ID: 20512722)
1. Assessment of the extent of bacterial growth in reverse osmosis system for improving drinking water quality. Park SK; Hu JY J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(8):968-77. PubMed ID: 20512722 [TBL] [Abstract][Full Text] [Related]
2. Bacterial growth through microfiltration membranes and NOM characteristics in an MF-RO integrated membrane system: Lab-scale and full-scale studies. Park JW; Lee YJ; Meyer AS; Douterelo I; Maeng SK Water Res; 2018 Nov; 144():36-45. PubMed ID: 30014977 [TBL] [Abstract][Full Text] [Related]
3. Multi-parametric assessment of biological stability of drinking water produced from groundwater: Reverse osmosis vs. conventional treatment. Sousi M; Liu G; Salinas-Rodriguez SG; Chen L; Dusseldorp J; Wessels P; Schippers JC; Kennedy MD; van der Meer W Water Res; 2020 Nov; 186():116317. PubMed ID: 32841931 [TBL] [Abstract][Full Text] [Related]
4. The effects of water reclamation technologies on biological stability of industrial water. Ng WJ; Ong SL; Hu JY Water Sci Technol; 2001; 43(10):327-34. PubMed ID: 11436798 [TBL] [Abstract][Full Text] [Related]
5. Biofiltration pretreatment for reverse osmosis (RO) membrane in a water reclamation system. Hu JY; Song LF; Ong SL; Phua ET; Ng WJ Chemosphere; 2005 Mar; 59(1):127-33. PubMed ID: 15698653 [TBL] [Abstract][Full Text] [Related]
6. Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition. Tsai YP J Basic Microbiol; 2005; 45(6):475-85. PubMed ID: 16304710 [TBL] [Abstract][Full Text] [Related]
7. Further developing the bacterial growth potential method for ultra-pure drinking water produced by remineralization of reverse osmosis permeate. Sousi M; Liu G; Salinas-Rodriguez SG; Knezev A; Blankert B; Schippers JC; van der Meer W; Kennedy MD Water Res; 2018 Nov; 145():687-696. PubMed ID: 30212807 [TBL] [Abstract][Full Text] [Related]
8. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems. Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091 [TBL] [Abstract][Full Text] [Related]
9. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces. Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926 [TBL] [Abstract][Full Text] [Related]
10. Combination of cupric ion with hydroxylamine and hydrogen peroxide for the control of bacterial biofilms on RO membranes. Lee HJ; Kim HE; Lee C Water Res; 2017 Mar; 110():83-90. PubMed ID: 27998786 [TBL] [Abstract][Full Text] [Related]
11. Seawater desalination based drinking water: Microbial characterization during distribution with and without residual chlorine. Farhat N; Kim L; Mineta K; Alarawi M; Gojobori T; Saikaly P; Vrouwenvelder J Water Res; 2022 Feb; 210():117975. PubMed ID: 34952456 [TBL] [Abstract][Full Text] [Related]
12. Pseudomonas-related populations associated with reverse osmosis in drinking water treatment. Sala-Comorera L; Blanch AR; Vilaró C; Galofré B; García-Aljaro C J Environ Manage; 2016 Nov; 182():335-341. PubMed ID: 27497310 [TBL] [Abstract][Full Text] [Related]
13. Feasibility of supercritical CO₂ treatment for controlling biofouling in the reverse osmosis process. Mun S; Baek Y; Kim C; Lee YW; Yoon J Biofouling; 2012; 28(6):627-33. PubMed ID: 22726211 [TBL] [Abstract][Full Text] [Related]
14. Assessment of online bacterial particle counts for monitoring the performance of reverse osmosis membrane process in potable reuse. Fujioka T; Makabe R; Mori N; Snyder SA; Leddy M Sci Total Environ; 2019 Jun; 667():540-544. PubMed ID: 30833252 [TBL] [Abstract][Full Text] [Related]
15. Primary Colonizing van der Kooij D; Veenendaal HR; Italiaander R; van der Mark EJ; Dignum M Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30291115 [TBL] [Abstract][Full Text] [Related]
16. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production. Belila A; El-Chakhtoura J; Otaibi N; Muyzer G; Gonzalez-Gil G; Saikaly PE; van Loosdrecht MCM; Vrouwenvelder JS Water Res; 2016 May; 94():62-72. PubMed ID: 26925544 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of microbial regrowth potential by assimilable organic carbon in various reclaimed water and distribution systems. Thayanukul P; Kurisu F; Kasuga I; Furumai H Water Res; 2013 Jan; 47(1):225-32. PubMed ID: 23134741 [TBL] [Abstract][Full Text] [Related]
18. Monitoring biofouling based on aerobic respiration in reverse osmosis system. Yu Y; Park KY; Jung J; Song W; Kim J; Ryu J; Lade H; Kweon J J Environ Sci (China); 2019 Apr; 78():247-256. PubMed ID: 30665643 [TBL] [Abstract][Full Text] [Related]
19. Comparing microfiltration-reverse osmosis and soil-aquifer treatment for indirect potable reuse of water. Drewes JE; Reinhard M; Fox P Water Res; 2003 Sep; 37(15):3612-21. PubMed ID: 12867327 [TBL] [Abstract][Full Text] [Related]
20. Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment. Weinrich L; LeChevallier M; Haas CN Water Res; 2016 Sep; 101():203-213. PubMed ID: 27262548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]