These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes. Prenner EJ; Lewis RN; Kondejewski LH; Hodges RS; McElhaney RN Biochim Biophys Acta; 1999 Mar; 1417(2):211-23. PubMed ID: 10082797 [TBL] [Abstract][Full Text] [Related]
4. Surface charge markedly attenuates the nonlamellar phase-forming propensities of lipid bilayer membranes: calorimetric and (31)P-nuclear magnetic resonance studies of mixtures of cationic, anionic, and zwitterionic lipids. Lewis RN; McElhaney RN Biophys J; 2000 Sep; 79(3):1455-64. PubMed ID: 10969007 [TBL] [Abstract][Full Text] [Related]
5. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246 [TBL] [Abstract][Full Text] [Related]
6. Binding of cationic model peptides (KX) Hädicke A; Blume A Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):415-424. PubMed ID: 28034634 [TBL] [Abstract][Full Text] [Related]
7. Interactions of tryptophan-rich cathelicidin antimicrobial peptides with model membranes studied by differential scanning calorimetry. Andrushchenko VV; Vogel HJ; Prenner EJ Biochim Biophys Acta; 2007 Oct; 1768(10):2447-58. PubMed ID: 17597579 [TBL] [Abstract][Full Text] [Related]
8. Lysylated phospholipids stabilize models of bacterial lipid bilayers and protect against antimicrobial peptides. Cox E; Michalak A; Pagentine S; Seaton P; Pokorny A Biochim Biophys Acta; 2014 Sep; 1838(9):2198-204. PubMed ID: 24780374 [TBL] [Abstract][Full Text] [Related]
9. The efficacy of trivalent cyclic hexapeptides to induce lipid clustering in PG/PE membranes correlates with their antimicrobial activity. Finger S; Kerth A; Dathe M; Blume A Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2998-3006. PubMed ID: 26367060 [TBL] [Abstract][Full Text] [Related]
10. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638 [TBL] [Abstract][Full Text] [Related]
11. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Hallock KJ; Lee DK; Ramamoorthy A Biophys J; 2003 May; 84(5):3052-60. PubMed ID: 12719236 [TBL] [Abstract][Full Text] [Related]
12. Peptide induced demixing in PG/PE lipid mixtures: a mechanism for the specificity of antimicrobial peptides towards bacterial membranes? Arouri A; Dathe M; Blume A Biochim Biophys Acta; 2009 Mar; 1788(3):650-9. PubMed ID: 19118516 [TBL] [Abstract][Full Text] [Related]
13. A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes. Kwon B; Waring AJ; Hong M Biophys J; 2013 Nov; 105(10):2333-42. PubMed ID: 24268145 [TBL] [Abstract][Full Text] [Related]
14. Calorimetric and spectroscopic studies of the phase behavior and organization of lipid bilayer model membranes composed of binary mixtures of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol. Lewis RN; Zhang YP; McElhaney RN Biochim Biophys Acta; 2005 Mar; 1668(2):203-14. PubMed ID: 15737331 [TBL] [Abstract][Full Text] [Related]
15. Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Alves ID; Goasdoué N; Correia I; Aubry S; Galanth C; Sagan S; Lavielle S; Chassaing G Biochim Biophys Acta; 2008; 1780(7-8):948-59. PubMed ID: 18498774 [TBL] [Abstract][Full Text] [Related]
16. The impact of non-ideality of lipid mixing on peptide induced lipid clustering. Finger S; Kerth AM; Dathe M; Blume A Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183248. PubMed ID: 32145281 [TBL] [Abstract][Full Text] [Related]
17. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes. McMullen TP; Lewis RN; McElhaney RN Biochim Biophys Acta; 2009 Feb; 1788(2):345-57. PubMed ID: 19083990 [TBL] [Abstract][Full Text] [Related]
18. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Cheng JT; Hale JD; Elliot M; Hancock RE; Straus SK Biophys J; 2009 Jan; 96(2):552-65. PubMed ID: 19167304 [TBL] [Abstract][Full Text] [Related]
19. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
20. Biophysical investigation of the membrane-disrupting mechanism of the antimicrobial and amyloid-like peptide dermaseptin S9. Caillon L; Killian JA; Lequin O; Khemtémourian L PLoS One; 2013; 8(10):e75528. PubMed ID: 24146759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]