These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 20513401)
1. Unsteady motion, finite Reynolds numbers, and wall effect on Vorticella convallaria contribute contraction force greater than the stokes drag. Ryu S; Matsudaira P Biophys J; 2010 Jun; 98(11):2574-81. PubMed ID: 20513401 [TBL] [Abstract][Full Text] [Related]
2. Stalk-length-dependence of the contractility of Vorticella convallaria. Chung EG; Ryu S Phys Biol; 2017 Nov; 14(6):066002. PubMed ID: 28862154 [TBL] [Abstract][Full Text] [Related]
3. Maximal force characteristics of the Ca(2+)-powered actuator of Vorticella convallaria. Ryu S; Lang MJ; Matsudaira P Biophys J; 2012 Sep; 103(5):860-7. PubMed ID: 23009835 [TBL] [Abstract][Full Text] [Related]
4. Direct measurement of Vorticella contraction force by micropipette deflection. France D; Tejada J; Matsudaira P FEBS Lett; 2017 Feb; 591(4):581-589. PubMed ID: 28130786 [TBL] [Abstract][Full Text] [Related]
5. Contraction and extension of Vorticella and its mechanical characterization under flow loading. Nagai M; Asai H; Fujita H Biomicrofluidics; 2010 Aug; 4(3):. PubMed ID: 20859534 [TBL] [Abstract][Full Text] [Related]
6. Flow and transport effect caused by the stalk contraction cycle of Zhou J; Ryu S; Admiraal D Biomicrofluidics; 2017 May; 11(3):034119. PubMed ID: 28670352 [No Abstract] [Full Text] [Related]
8. High-speed video cinematographic demonstration of stalk and zooid contraction of Vorticella convallaria. Moriyama Y; Hiyama S; Asai H Biophys J; 1998 Jan; 74(1):487-91. PubMed ID: 9449349 [TBL] [Abstract][Full Text] [Related]
9. Power-limited contraction dynamics of Vorticella convallaria: an ultrafast biological spring. Upadhyaya A; Baraban M; Wong J; Matsudaira P; van Oudenaarden A; Mahadevan L Biophys J; 2008 Jan; 94(1):265-72. PubMed ID: 17933875 [TBL] [Abstract][Full Text] [Related]
10. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation. Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615 [TBL] [Abstract][Full Text] [Related]
11. Chemical control of Vorticella bioactuator using microfluidics. Nagai M; Ryu S; Thorsen T; Matsudaira P; Fujita H Lab Chip; 2010 Jun; 10(12):1574-8. PubMed ID: 20449516 [TBL] [Abstract][Full Text] [Related]
12. The hydrodynamics of swimming at intermediate Reynolds numbers in the water boatman (Corixidae). Ngo V; McHenry MJ J Exp Biol; 2014 Aug; 217(Pt 15):2740-51. PubMed ID: 24855668 [TBL] [Abstract][Full Text] [Related]
13. Solving the aerodynamics of fungal flight: how air viscosity slows spore motion. Fischer MW; Stolze-Rybczynski JL; Davis DJ; Cui Y; Money NP Fungal Biol; 2010; 114(11-12):943-8. PubMed ID: 21036338 [TBL] [Abstract][Full Text] [Related]
14. The hydrodynamics of locomotion at intermediate Reynolds numbers: undulatory swimming in ascidian larvae (Botrylloides sp.). McHenry MJ; Azizi E; Strother JA J Exp Biol; 2003 Jan; 206(Pt 2):327-43. PubMed ID: 12477902 [TBL] [Abstract][Full Text] [Related]
16. Magnetic tracking of acoustic radiation force-induced micro-order displacement. Pavan TZ; Almeida TW; Carneiro AA IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):909-15. PubMed ID: 21622046 [TBL] [Abstract][Full Text] [Related]
17. Fluid-structure interaction problems in bio-fluid mechanics: a numerical study of the motion of an isolated particle freely suspended in channel flow. Dubini G; Pietrabissa R; Montevecchi FM Med Eng Phys; 1995 Dec; 17(8):609-17. PubMed ID: 8564156 [TBL] [Abstract][Full Text] [Related]
18. Ca(2+)-induced tension development in the stalks of glycerinated Vorticella convallaria. Moriyama Y; Yasuda K; Ishiwata S; Asai H Cell Motil Cytoskeleton; 1996; 34(4):271-8. PubMed ID: 8871814 [TBL] [Abstract][Full Text] [Related]
19. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles. Yu Z; Lin Z; Shao X; Wang LP Phys Rev E; 2017 Sep; 96(3-1):033102. PubMed ID: 29346864 [TBL] [Abstract][Full Text] [Related]
20. Nearby boundaries create eddies near microscopic filter feeders. Pepper RE; Roper M; Ryu S; Matsudaira P; Stone HA J R Soc Interface; 2010 May; 7(46):851-62. PubMed ID: 19942677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]