These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 20513481)

  • 1. Mass spectrometry approaches for the redox characterization of protein cysteine residues the case of the transcription factor Pax-8.
    Scaloni A; Tell G
    Methods Enzymol; 2010; 473():227-50. PubMed ID: 20513481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidoreductive modification of two cysteine residues in paired domain by Ref-1 regulates DNA-binding activity of Pax-8.
    Cao X; Kambe F; Ohmori S; Seo H
    Biochem Biophys Res Commun; 2002 Sep; 297(2):288-93. PubMed ID: 12237116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of cysteine residues by cyclopentenone prostaglandins: interplay with redox regulation of protein function.
    Oeste CL; PĂ©rez-Sala D
    Mass Spectrom Rev; 2014; 33(2):110-25. PubMed ID: 23818260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox regulation of thyroid-transcription factors, Pax-8 and TTF-1, is involved in their increased DNA-binding activities by thyrotropin in rat thyroid FRTL-5 cells.
    Kambe F; Nomura Y; Okamoto T; Seo H
    Mol Endocrinol; 1996 Jul; 10(7):801-12. PubMed ID: 8813721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural studies on Pax-8 Prd domain/DNA complex.
    Campagnolo M; Pesaresi A; Zelezetsky I; Geremia S; Randaccio L; Bisca A; Tell G
    J Biomol Struct Dyn; 2007 Apr; 24(5):429-41. PubMed ID: 17313188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional inactivation of the transcription factor Pax8 through oligomerization chain reaction.
    D'Andrea B; Iacone R; Di Palma T; Nitsch R; Baratta MG; Nitsch L; Di Lauro R; Zannini M
    Mol Endocrinol; 2006 Aug; 20(8):1810-24. PubMed ID: 16613988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thyroid-specific gene expression is differentially influenced by intracellular glutathione level in FRTL-5 cells.
    Lonigro R; Donnini D; Fabbro D; Perrella G; Damante G; Ambesi Impiombato FS; Curcio F
    Endocrinology; 2000 Mar; 141(3):901-9. PubMed ID: 10698164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Avicinylation (thioesterification): a protein modification that can regulate the response to oxidative and nitrosative stress.
    Haridas V; Kim SO; Nishimura G; Hausladen A; Stamler JS; Gutterman JU
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10088-93. PubMed ID: 16030151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ref-1 controls pax-8 DNA-binding activity.
    Tell G; Pellizzari L; Cimarosti D; Pucillo C; Damante G
    Biochem Biophys Res Commun; 1998 Nov; 252(1):178-83. PubMed ID: 9813166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome screens for Cys residues oxidation: the redoxome.
    Chiappetta G; Ndiaye S; Igbaria A; Kumar C; Vinh J; Toledano MB
    Methods Enzymol; 2010; 473():199-216. PubMed ID: 20513479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Id helix-loop-helix proteins antagonize pax transcription factor activity by inhibiting DNA binding.
    Roberts EC; Deed RW; Inoue T; Norton JD; Sharrocks AD
    Mol Cell Biol; 2001 Jan; 21(2):524-33. PubMed ID: 11134340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining fluorescence detection and mass spectrometric analysis for comprehensive and quantitative analysis of redox-sensitive cysteines in native membrane proteins.
    Petrotchenko EV; Pasek D; Elms P; Dokholyan NV; Meissner G; Borchers CH
    Anal Chem; 2006 Dec; 78(23):7959-66. PubMed ID: 17134128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutathione, stress responses, and redox signaling in lung inflammation.
    Rahman I; Biswas SK; Jimenez LA; Torres M; Forman HJ
    Antioxid Redox Signal; 2005; 7(1-2):42-59. PubMed ID: 15650395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 15-deoxy-Delta12,14-prostaglandin J2 as a potential endogenous regulator of redox-sensitive transcription factors.
    Kim EH; Surh YJ
    Biochem Pharmacol; 2006 Nov; 72(11):1516-28. PubMed ID: 16987499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of zinc finger transcription factors: physiological consequences.
    Webster KA; Prentice H; Bishopric NH
    Antioxid Redox Signal; 2001 Aug; 3(4):535-48. PubMed ID: 11554443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox regulation of the DNA repair function of the human AP endonuclease Ape1/ref-1.
    Kelley MR; Parsons SH
    Antioxid Redox Signal; 2001 Aug; 3(4):671-83. PubMed ID: 11554453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synergistic activity of thyroid transcription factor 1 and Pax 8 relies on the promoter/enhancer interplay.
    Miccadei S; De Leo R; Zammarchi E; Natali PG; Civitareale D
    Mol Endocrinol; 2002 Apr; 16(4):837-46. PubMed ID: 11923479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of cysteine residues as redox-sensitive regulatory switches.
    Barford D
    Curr Opin Struct Biol; 2004 Dec; 14(6):679-86. PubMed ID: 15582391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical 'omics' approaches for understanding protein cysteine oxidation in biology.
    Leonard SE; Carroll KS
    Curr Opin Chem Biol; 2011 Feb; 15(1):88-102. PubMed ID: 21130680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of human sodium/iodide symporter, thyroid transcription factor-1, and paired-box-protein-8 gene expression in benign thyroid diseases.
    Joba W; Spitzweg C; Schriever K; Heufelder AE
    Thyroid; 1999 May; 9(5):455-66. PubMed ID: 10365677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.