BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20513663)

  • 21. Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking.
    Aloy P; Querol E; Aviles FX; Sternberg MJ
    J Mol Biol; 2001 Aug; 311(2):395-408. PubMed ID: 11478868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of new protein domains using co-occurrence: application to Plasmodium falciparum.
    Terrapon N; Gascuel O; Maréchal E; Bréehélin L
    Bioinformatics; 2009 Dec; 25(23):3077-83. PubMed ID: 19786484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide enzyme annotation with precision control: catalytic families (CatFam) databases.
    Yu C; Zavaljevski N; Desai V; Reifman J
    Proteins; 2009 Feb; 74(2):449-60. PubMed ID: 18636476
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Model-based prediction of sequence alignment quality.
    Ahola V; Aittokallio T; Vihinen M; Uusipaikka E
    Bioinformatics; 2008 Oct; 24(19):2165-71. PubMed ID: 18678587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AutoSCOP: automated prediction of SCOP classifications using unique pattern-class mappings.
    Gewehr JE; Hintermair V; Zimmer R
    Bioinformatics; 2007 May; 23(10):1203-10. PubMed ID: 17379694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes.
    Zhou XB; Chen C; Li ZC; Zou XY
    J Theor Biol; 2007 Oct; 248(3):546-51. PubMed ID: 17628605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring an alignment free approach for protein classification and structural class prediction.
    Deschavanne P; Tufféry P
    Biochimie; 2008 Apr; 90(4):615-25. PubMed ID: 18067866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data.
    Hawkins T; Chitale M; Luban S; Kihara D
    Proteins; 2009 Feb; 74(3):566-82. PubMed ID: 18655063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H; Raghava GP
    Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting protein structure classes from function predictions.
    Sommer I; Rahnenführer J; Domingues FS; de Lichtenberg U; Lengauer T
    Bioinformatics; 2004 Mar; 20(5):770-6. PubMed ID: 14751994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SOrt-ITEMS: Sequence orthology based approach for improved taxonomic estimation of metagenomic sequences.
    Monzoorul Haque M; Ghosh TS; Komanduri D; Mande SS
    Bioinformatics; 2009 Jul; 25(14):1722-30. PubMed ID: 19439565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting enzyme family classes by hybridizing gene product composition and pseudo-amino acid composition.
    Cai YD; Zhou GP; Chou KC
    J Theor Biol; 2005 May; 234(1):145-9. PubMed ID: 15721043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large-scale prediction of function shift in protein families with a focus on enzymatic function.
    Abhiman S; Sonnhammer EL
    Proteins; 2005 Sep; 60(4):758-68. PubMed ID: 16001403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GOtcha: a new method for prediction of protein function assessed by the annotation of seven genomes.
    Martin DM; Berriman M; Barton GJ
    BMC Bioinformatics; 2004 Nov; 5():178. PubMed ID: 15550167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Subfamily hmms in functional genomics.
    Brown D; Krishnamurthy N; Dale JM; Christopher W; Sjölander K
    Pac Symp Biocomput; 2005; ():322-33. PubMed ID: 15759638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A chemogenomic analysis of the human proteome: application to enzyme families.
    Bernasconi P; Chen M; Galasinski S; Popa-Burke I; Bobasheva A; Coudurier L; Birkos S; Hallam R; Janzen WP
    J Biomol Screen; 2007 Oct; 12(7):972-82. PubMed ID: 17942790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement in Protein Domain Identification Is Reached by Breaking Consensus, with the Agreement of Many Profiles and Domain Co-occurrence.
    Bernardes J; Zaverucha G; Vaquero C; Carbone A
    PLoS Comput Biol; 2016 Jul; 12(7):e1005038. PubMed ID: 27472895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein molecular function prediction by Bayesian phylogenomics.
    Engelhardt BE; Jordan MI; Muratore KE; Brenner SE
    PLoS Comput Biol; 2005 Oct; 1(5):e45. PubMed ID: 16217548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CORRIE: enzyme sequence annotation with confidence estimates.
    Audit B; Levy ED; Gilks WR; Goldovsky L; Ouzounis CA
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S3. PubMed ID: 17570146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EnzDP: improved enzyme annotation for metabolic network reconstruction based on domain composition profiles.
    Nguyen NN; Srihari S; Leong HW; Chong KF
    J Bioinform Comput Biol; 2015 Oct; 13(5):1543003. PubMed ID: 26542446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.