These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 2051479)
1. Can one measure the free energy of binding of the histone octamer to different DNA sequences by salt-dependent reconstitution? Drew HR J Mol Biol; 1991 Jun; 219(3):391-2. PubMed ID: 2051479 [TBL] [Abstract][Full Text] [Related]
2. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. Lowary PT; Widom J J Mol Biol; 1998 Feb; 276(1):19-42. PubMed ID: 9514715 [TBL] [Abstract][Full Text] [Related]
3. Energetics and affinity of the histone octamer for defined DNA sequences. Gottesfeld JM; Luger K Biochemistry; 2001 Sep; 40(37):10927-33. PubMed ID: 11551187 [TBL] [Abstract][Full Text] [Related]
4. DNA recognition and nucleosome organization. Travers A; Drew H Biopolymers; 1997; 44(4):423-33. PubMed ID: 9782778 [TBL] [Abstract][Full Text] [Related]
5. Relative affinities of DNA sequences for the histone octamer depend strongly upon both the temperature and octamer concentration. Wu C; Travers A Biochemistry; 2005 Nov; 44(43):14329-34. PubMed ID: 16245949 [TBL] [Abstract][Full Text] [Related]
6. Transcription of DNA templates associated with histone (H3 x H4)(2) tetramers. Chirinos M; Hernández F; Palacián E Arch Biochem Biophys; 1999 Oct; 370(2):222-30. PubMed ID: 10510281 [TBL] [Abstract][Full Text] [Related]
7. Nucleosome positioning on chicken and human globin gene promoters in vitro. Novel mapping techniques. Yenidunya A; Davey C; Clark D; Felsenfeld G; Allan J J Mol Biol; 1994 Apr; 237(4):401-14. PubMed ID: 8151701 [TBL] [Abstract][Full Text] [Related]
8. Nucleosome positioning is determined by the (H3-H4)2 tetramer. Dong F; van Holde KE Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10596-600. PubMed ID: 1961726 [TBL] [Abstract][Full Text] [Related]
9. Reconstitution of mononucleosomes: characterization of distinct particles that differ in the position of the histone core. Linxweiler W; Hörz W Nucleic Acids Res; 1984 Dec; 12(24):9395-413. PubMed ID: 6096828 [TBL] [Abstract][Full Text] [Related]
10. Algorithms for prediction of histone octamer binding sites. Turnell WG; Travers AA Methods Enzymol; 1992; 212():387-99. PubMed ID: 1518456 [No Abstract] [Full Text] [Related]
11. Structure-based identification of new high-affinity nucleosome binding sequences. Battistini F; Hunter CA; Moore IK; Widom J J Mol Biol; 2012 Jun; 420(1-2):8-16. PubMed ID: 22472421 [TBL] [Abstract][Full Text] [Related]
12. Nucleosome packaging and nucleosome positioning of genomic DNA. Lowary PT; Widom J Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1183-8. PubMed ID: 9037027 [TBL] [Abstract][Full Text] [Related]
13. Structural rearrangements of the histone octamer translocate DNA. Bilokapic S; Strauss M; Halic M Nat Commun; 2018 Apr; 9(1):1330. PubMed ID: 29626188 [TBL] [Abstract][Full Text] [Related]
14. A statistical thermodynamic model applied to experimental AFM population and location data is able to quantify DNA-histone binding strength and internucleosomal interaction differences between acetylated and unacetylated nucleosomal arrays. Solis FJ; Bash R; Yodh J; Lindsay SM; Lohr D Biophys J; 2004 Nov; 87(5):3372-87. PubMed ID: 15347582 [TBL] [Abstract][Full Text] [Related]
15. Enhanced stability of histone octamers from plant nucleosomes: role of H2A and H2B histones. Moehs CP; Baxevanis AD; Moudrianakis EN; Spiker S Biochemistry; 1992 Nov; 31(44):10844-51. PubMed ID: 1420197 [TBL] [Abstract][Full Text] [Related]
17. Limitations of the poly(glutamic acid) reconstitution method in the reassembly of mono- and dinucleosomes. Pennings S; Muyldermans S; Wyns L Biochemistry; 1986 Sep; 25(18):5043-51. PubMed ID: 2429693 [TBL] [Abstract][Full Text] [Related]