BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 20514927)

  • 21. Renal sympathoinhibitory and regional vasodilator responses to cholecystokinin are altered in obesity-related hypertension.
    How JM; Pumpa TJ; Sartor DM
    Exp Physiol; 2013 Mar; 98(3):655-64. PubMed ID: 23180814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of excitatory amino acid inputs to the rostral ventrolateral medulla in cardiovascular regulation.
    Sved AF; Ito S; Yajima Y
    Clin Exp Pharmacol Physiol; 2002; 29(5-6):503-6. PubMed ID: 12010199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of endothelin-1 in blood pressure regulation in a rat model of visceral obesity and hypertension.
    da Silva AA; Kuo JJ; Tallam LS; Hall JE
    Hypertension; 2004 Feb; 43(2):383-7. PubMed ID: 14707164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sustained activation of the central baroreceptor pathway in obesity hypertension.
    Lohmeier TE; Warren S; Cunningham JT
    Hypertension; 2003 Jul; 42(1):96-102. PubMed ID: 12771049
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chronic estradiol-17β exposure increases superoxide production in the rostral ventrolateral medulla and causes hypertension: reversal by resveratrol.
    Subramanian M; Balasubramanian P; Garver H; Northcott C; Zhao H; Haywood JR; Fink GD; MohanKumar SM; MohanKumar PS
    Am J Physiol Regul Integr Comp Physiol; 2011 Jun; 300(6):R1560-8. PubMed ID: 21411770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Blunted sympathoinhibitory responses in obesity-related hypertension are due to aberrant central but not peripheral signalling mechanisms.
    How JM; Wardak SA; Ameer SI; Davey RA; Sartor DM
    J Physiol; 2014 Apr; 592(7):1705-20. PubMed ID: 24492842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidative stress in a rat model of obesity-induced hypertension.
    Dobrian AD; Davies MJ; Schriver SD; Lauterio TJ; Prewitt RL
    Hypertension; 2001 Feb; 37(2 Pt 2):554-60. PubMed ID: 11230334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bilateral renal denervation prevents the development of hypertension during diet-induced obesity in male rats.
    Nazari S; Haghani M; Moosavi SMS
    Exp Physiol; 2021 Nov; 106(11):2248-2261. PubMed ID: 34476853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of hypertension in a rat model of diet-induced obesity.
    Dobrian AD; Davies MJ; Prewitt RL; Lauterio TJ
    Hypertension; 2000 Apr; 35(4):1009-15. PubMed ID: 10775577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temporal patterns of alterations in obesity index, lipid profile, renal function and blood pressure during the development of hypertension in male, but not female, rats fed a moderately high-fat diet.
    Nazari S; Moosavi SMS
    Arch Physiol Biochem; 2022 Aug; 128(4):897-909. PubMed ID: 32195603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurovascular compression of the rostral ventrolateral medulla related to essential hypertension.
    Morimoto S; Sasaki S; Miki S; Kawa T; Itoh H; Nakata T; Takeda K; Nakagawa M; Kizu O; Furuya S; Naruse S; Maeda T
    Hypertension; 1997 Jul; 30(1 Pt 1):77-82. PubMed ID: 9231824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Obesity-induced hypertension in the dog.
    Rocchini AP; Moorehead C; Wentz E; Deremer S
    Hypertension; 1987 Jun; 9(6 Pt 2):III64-8. PubMed ID: 3298046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential sensitivity of chronic high-fat-diet-induced obesity in Sprague-Dawley rats.
    Devan SRK; Arumugam S; Shankar G; Poosala S
    J Basic Clin Physiol Pharmacol; 2018 Sep; 29(5):553-563. PubMed ID: 30076779
    [No Abstract]   [Full Text] [Related]  

  • 34. Appraisal of excess calories as a factor in the causation of disease.
    Van Itallie TB; Hirsch J
    Am J Clin Nutr; 1979 Dec; 32(12 Suppl):2648-53. PubMed ID: 506985
    [No Abstract]   [Full Text] [Related]  

  • 35. Carbon recycling goes full circle: fatty acids to excitatory amino acids and now excitatory amino acids to fatty acids.
    Murphy EJ
    J Neurochem; 2014 May; 129(3):363-5. PubMed ID: 24646196
    [No Abstract]   [Full Text] [Related]  

  • 36. The relation of adiposity to blood pressure and development of hypertension. The Framingham study.
    Kannel WB; Brand N; Skinner JJ; Dawber TR; McNamara PM
    Ann Intern Med; 1967 Jul; 67(1):48-59. PubMed ID: 6028658
    [No Abstract]   [Full Text] [Related]  

  • 37. AMINO ACIDS AND HYPERTENSION.
    Breed LM
    Cal State J Med; 1919 Oct; 17(10):371-3. PubMed ID: 18738024
    [No Abstract]   [Full Text] [Related]  

  • 38. [Effect of Arg188Gln (G/A) mutation on enzymatic activity of kynureninase].
    Shen J; Chen W; Ji K; Gao P; Zhu D
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2017 May; 46(6):643-648. PubMed ID: 29658668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blockade of Rostral Ventrolateral Medulla (RVLM) Bombesin Receptor Type 1 Decreases Blood Pressure and Sympathetic Activity in Anesthetized Spontaneously Hypertensive Rats.
    Pinto IS; Mourão AA; da Silva EF; Camargo AS; Marques SM; Gomes KP; Fajemiroye JO; da Silva Reis AA; Rebelo AC; Ferreira-Neto ML; Rosa DA; Freiria-Oliveira AH; Castro CH; Colombari E; Colugnati DB; Pedrino GR
    Front Physiol; 2016; 7():205. PubMed ID: 27313544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural Control of Non-vasomotor Organs in Hypertension.
    Hurr C; Young CN
    Curr Hypertens Rep; 2016 Apr; 18(4):30. PubMed ID: 26957306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.