These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Comparative studies between covalently immobilized and coated chiral stationary phases based on polysaccharide derivatives for enantiomer separation of N-protected alpha-amino acids and their ester derivatives. Jin JY; Bae SK; Lee W Chirality; 2009 Nov; 21(10):871-7. PubMed ID: 19006204 [TBL] [Abstract][Full Text] [Related]
24. Solid-phase synthesis of chiral stationary phases based on 2,4,5,6-tetrachloro-1,3-dicyanobenzene derivatives spaced from N-3,5-dinitrobenzoyl alpha-amino acids: comparative study of their resolution efficacy. Kontrec D; Abatangelo A; Vinkovic V; Sunjic V Chirality; 2001 Jun; 13(6):294-301. PubMed ID: 11370018 [TBL] [Abstract][Full Text] [Related]
25. Resolution of beta-amino acids on a high performance liquid chromatographic doubly tethered chiral stationary phase containing N-CH3 amide linkage based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. Hyun MH; Song Y; Cho YJ; Choi HJ J Sep Sci; 2007 Oct; 30(15):2539-43. PubMed ID: 17688299 [TBL] [Abstract][Full Text] [Related]
26. Preparation of a new doubly tethered chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid and its application. Hyun MH; Song Y; Cho YJ; Kim DH J Chromatogr A; 2006 Mar; 1108(2):208-17. PubMed ID: 16445923 [TBL] [Abstract][Full Text] [Related]
27. Effect of the residual silanol group protection on the liquid chromatographic resolution of racemic primary amino compounds on a chiral stationary phase based on optically active (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6. Hyun MH; Han SC; Choi HJ; Kang BS; Ha HJ J Chromatogr A; 2007 Jan; 1138(1-2):169-74. PubMed ID: 17084849 [TBL] [Abstract][Full Text] [Related]
28. Enantioseparation using urea- and imide-bearing chitosan phenylcarbamate derivatives as chiral stationary phases for high-performance liquid chromatography. Yamamoto C; Fujisawa M; Kamigaito M; Okamoto Y Chirality; 2008 Mar; 20(3-4):288-94. PubMed ID: 17597117 [TBL] [Abstract][Full Text] [Related]
29. Separation performance and recognition mechanism of mono(6-deoxy-imino)-beta-cyclodextrins chiral stationary phases in high-performance liquid chromatography. Zhou ZM; Li X; Chen XP; Fang M; Dong X Talanta; 2010 Jul; 82(2):775-84. PubMed ID: 20602969 [TBL] [Abstract][Full Text] [Related]
30. Synthesis and application of mono-2A-azido-2A-deoxyperphenylcarbamoylated beta-cyclodextrin and mono-2A-azido-2A-deoxyperacetylated beta-cyclodextrin as chiral stationary phases for high-performance liquid chromatography. Poon YF; Muderawan IW; Ng SC J Chromatogr A; 2006 Jan; 1101(1-2):185-97. PubMed ID: 16236286 [TBL] [Abstract][Full Text] [Related]
31. Versatile and practical macrocyclic reagent with multiple hydrogen-bonding sites for chiral discrimination in NMR. Ema T; Tanida D; Sakai T J Am Chem Soc; 2007 Aug; 129(34):10591-6. PubMed ID: 17676846 [TBL] [Abstract][Full Text] [Related]
32. A novel chiral stationary phase in HPLC: optical resolution of racemic amino compounds by (1-->6)-2,5-anhydro-3,4-di-O-ethyl-D-glucitol bound on silica gel. Umeda S; Satoh T; Saitoh K; Kanai H; Kamada M; Yokota K; Kakuchi T Enantiomer; 2000; 5(5):473-9. PubMed ID: 11143811 [TBL] [Abstract][Full Text] [Related]
33. Enantiomer separation of a powerful chiral auxiliary, 2-methoxy-2-(1-naphthyl)propionic acid by liquid chromatography using chiral anion exchanger-type stationary phases in polar-organic mode; investigation of molecular recognition aspects. Gyimesi-Forrás K; Akasaka K; Lämmerhofer M; Maier NM; Fujita T; Watanabe M; Harada N; Lindner W Chirality; 2005; 17 Suppl():S134-42. PubMed ID: 15806575 [TBL] [Abstract][Full Text] [Related]
34. Liquid chromatographic enantioseparation of aryl alpha-amino ketones on a crown ether-based chiral stationary phase. Ho Hyun M; Tan G; Cho YJ Biomed Chromatogr; 2005 Apr; 19(3):208-13. PubMed ID: 15515110 [TBL] [Abstract][Full Text] [Related]
35. Enantiomeric separation of dansyl amino acids using macrocyclic antibiotics as chiral mobile phase additives by narrow-bore high-performance liquid chromatography. Sharp VS; Letts MN; Risley DS; Rose JP Chirality; 2004 Mar; 16(3):153-61. PubMed ID: 14770411 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of cyclodextrins modified with dichloro-, dimethyl-, and chloromethylphenylcarbamate groups as chiral stationary phases for capillary electrochromatography. Kartozia I; D'Orazio G; Chankvetadze B; Fanali S J Capill Electrophor Microchip Technol; 2005; 9(3-4):31-8. PubMed ID: 16042122 [TBL] [Abstract][Full Text] [Related]
38. Chromatographic evaluation and comparison of three beta-cyclodextrin-based stationary phases by capillary liquid chromatography and pressure-assisted capillary electrochromatography. Lin B; Ng SC; Feng YQ Electrophoresis; 2008 Oct; 29(19):4045-54. PubMed ID: 18958897 [TBL] [Abstract][Full Text] [Related]
39. Highly enantioselective HPLC separations using the covalently bonded macrocyclic antibiotic, ristocetin A, chiral stationary phase. Ekborg-Ott KH; Liu Y; Armstrong DW Chirality; 1998; 10(5):434-83. PubMed ID: 9691460 [TBL] [Abstract][Full Text] [Related]
40. Enantiomeric discrimination of pyrethroic acid esters on polysaccharide derived chiral stationary phases. Kim BH; Lee SU; Kim KT; Lee JY; Choi NH; Han YK; Ok JH Chirality; 2003 Mar; 15(3):276-83. PubMed ID: 12582995 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]