These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20515094)

  • 1. Dynamics simulation of N(2) scattering onto W(100,110) surfaces: A stringent test for the recently developed flexible periodic London-Eyring-Polanyi-Sato potential energy surface.
    Martin-Gondre L; Crespos C; Larregaray P; Rayez JC; van Ootegem B; Conte D
    J Chem Phys; 2010 May; 132(20):204501. PubMed ID: 20515094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling.
    Ludwig J; Vlachos DG
    J Chem Phys; 2007 Oct; 127(15):154716. PubMed ID: 17949200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of H2 Eley-Rideal abstraction from W(110): sensitivity to the representation of the molecule-surface potential.
    Pétuya R; Larrégaray P; Crespos C; Busnengo HF; Martínez AE
    J Chem Phys; 2014 Jul; 141(2):024701. PubMed ID: 25028032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the modified Shepard interpolation method to the determination of the potential energy surface for a molecule-surface reaction: H2 + Pt(111).
    Crespos C; Collins MA; Pijper E; Kroes GJ
    J Chem Phys; 2004 Feb; 120(5):2392-404. PubMed ID: 15268379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the dynamics of the C(3P,1D) + C2H2 reactions by the crossed molecular beam scattering technique.
    Leonori F; Petrucci R; Segoloni E; Bergeat A; Hickson KM; Balucani N; Casavecchia P
    J Phys Chem A; 2008 Feb; 112(7):1363-79. PubMed ID: 18229899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of the reactive scattering of F+D2 on a model family of potential energy surfaces with various topographies: the correlation approach.
    Rusin LY; Sevryuk MB; Toennies JP
    J Chem Phys; 2004 Jan; 120(2):800-12. PubMed ID: 15267916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Six-dimensional dynamics study of reactive and non reactive scattering of H(2) from Cu(111) using a chemically accurate potential energy surface.
    Díaz C; Olsen RA; Auerbach DJ; Kroes GJ
    Phys Chem Chem Phys; 2010 Jun; 12(24):6499-519. PubMed ID: 20473432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption and scattering of H2 and D2 by NiAl(110).
    Rivière P; Busnengo HF; Martín F
    J Chem Phys; 2005 Aug; 123(7):074705. PubMed ID: 16229608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasiclassical trajectory study of the Cl+CH4 reaction dynamics on a quadratic configuration interaction with single and double excitation interpolated potential energy surface.
    Castillo JF; Aoiz FJ; Bañares L
    J Chem Phys; 2006 Sep; 125(12):124316. PubMed ID: 17014183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive scattering of H2 from Cu(100): six-dimensional quantum dynamics results for reaction and scattering obtained with a new, accurately fitted potential-energy surface.
    Somers MF; Olsen RA; Busnengo HF; Baerends EJ; Kroes GJ
    J Chem Phys; 2004 Dec; 121(22):11379-87. PubMed ID: 15634096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpolating moving least-squares methods for fitting potential energy surfaces: computing high-density potential energy surface data from low-density ab initio data points.
    Dawes R; Thompson DL; Guo Y; Wagner AF; Minkoff M
    J Chem Phys; 2007 May; 126(18):184108. PubMed ID: 17508793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A scheme to interpolate potential energy surfaces and derivative coupling vectors without performing a global diabatization.
    Evenhuis C; Martínez TJ
    J Chem Phys; 2011 Dec; 135(22):224110. PubMed ID: 22168683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angular distributions of H-induced HD and D2 desorptions from the Si(100) surfaces.
    Inanaga S; Kiyonaga T; Rahman F; Khanom F; Namiki A; Lee J
    J Chem Phys; 2006 Feb; 124(5):054715. PubMed ID: 16468909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A self-starting method for obtaining analytic potential-energy surfaces from ab initio electronic structure calculations.
    Agrawal PM; Malshe M; Narulkar R; Raff LM; Hagan M; Bukkapatnum S; Komanduri R
    J Phys Chem A; 2009 Feb; 113(5):869-77. PubMed ID: 19123779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity.
    Castro-Palacios JC; Rubayo-Soneira J; Ishii K; Yamashita K
    J Chem Phys; 2007 Apr; 126(13):134315. PubMed ID: 17430040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient-based multiconfiguration Shepard interpolation for generating potential energy surfaces for polyatomic reactions.
    Tishchenko O; Truhlar DG
    J Chem Phys; 2010 Feb; 132(8):084109. PubMed ID: 20192292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpolating moving least-squares methods for fitting potential energy surfaces: an application to the H2CN unimolecular reaction.
    Guo Y; Harding LB; Wagner AF; Minkoff M; Thompson DL
    J Chem Phys; 2007 Mar; 126(10):104105. PubMed ID: 17362059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculating geochemical reaction pathways--exploration of the inner-sphere water exchange mechanism in Al(H2O)6(3+)(aq) + nH2O with ab Initio calculations and molecular dynamics.
    Evans RJ; Rustad JR; Casey WH
    J Phys Chem A; 2008 May; 112(17):4125-40. PubMed ID: 18366199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin-orbit coupled potential energy surfaces and properties using effective relativistic coupling by asymptotic representation.
    Ndome H; Eisfeld W
    J Chem Phys; 2012 Aug; 137(6):064101. PubMed ID: 22897249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of scattering and dissociative adsorption on a surface alloy: H2/W(100)-c(2 × 2)Cu.
    Batista MN; Busnengo HF; Martínez AE
    Phys Chem Chem Phys; 2011 Mar; 13(10):4614-24. PubMed ID: 21258711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.