These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 20515174)

  • 1. Optical fiber imaging for high speed plasma motion diagnostics: applied to low voltage circuit breakers.
    McBride JW; Balestrero A; Ghezzi L; Tribulato G; Cross KJ
    Rev Sci Instrum; 2010 May; 81(5):055109. PubMed ID: 20515174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a multiperspective optical measuring system for investigating decaying switching arcs at the nozzle exit of circuit breakers.
    Stoffels M; Simon S; Nikolic PG; Stoller P; Carstensen J
    Appl Opt; 2017 Mar; 56(7):2007-2019. PubMed ID: 28248402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measured turbulent mixing in a small-scale circuit breaker model.
    Basse NP; Bini R; Seeger M
    Appl Opt; 2009 Nov; 48(32):6381-91. PubMed ID: 19904340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical diagnostics of mercury jet for an intense proton target.
    Park H; Tsang T; Kirk HG; Ladeinde F; Graves VB; Spampinato PT; Carroll AJ; Titus PH; McDonald KT
    Rev Sci Instrum; 2008 Apr; 79(4):045111. PubMed ID: 18447556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glow-to-arc transition events in H2-Ar direct current pulsed plasma: automated measurement of current and voltage.
    Mendes LA; Mafra M; Rodrigues JC
    Rev Sci Instrum; 2012 Jan; 83(1):015112. PubMed ID: 22299991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of changes in optical fibers during arc-fusion splicing by use of quantitative phase imaging.
    Dragomir NM; Ampen-Lassen E; Baxter GW; Pace P; Huntington ST; Farrell PM; Stevenson AJ; Roberts A
    Microsc Res Tech; 2006 Nov; 69(11):847-51. PubMed ID: 17029239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic circuit for measuring the current slope (dI/dt) and the post-arc current in gas-filled circuit breakers.
    Votteler T; Stoller P
    Rev Sci Instrum; 2020 Feb; 91(2):024704. PubMed ID: 32113375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thyristor stack for pulsed inductive plasma generation.
    Teske C; Jacoby J; Schweizer W; Wiechula J
    Rev Sci Instrum; 2009 Mar; 80(3):034702. PubMed ID: 19334940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma.
    Inoue R; Hangai M; Kotera Y; Nakanishi H; Mori S; Morishita S; Yoshimura N
    Ophthalmology; 2009 Feb; 116(2):214-22. PubMed ID: 19091413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsed illumination, closed circuit television system for real-time viewing of unsteady (> 1 micros) events.
    Marden WW; Steinberger RL; Bracco FV
    Rev Sci Instrum; 1978 Oct; 49(10):1392. PubMed ID: 18698961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Note: A technique to capture and compose streak images of explosive events with unpredictable timing.
    Parker GR; Asay BW; Dickson PM
    Rev Sci Instrum; 2010 Jan; 81(1):016109. PubMed ID: 20113140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ophthalmic imaging by spectral optical coherence tomography.
    Wojtkowski M; Bajraszewski T; Gorczyńska I; Targowski P; Kowalczyk A; Wasilewski W; Radzewicz C
    Am J Ophthalmol; 2004 Sep; 138(3):412-9. PubMed ID: 15364223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of sensitivity and noise in the piezoelectric self-sensing and self-actuating cantilever with an integrated Wheatstone bridge circuit.
    Shin C; Jeon I; Khim ZG; Hong JW; Nam H
    Rev Sci Instrum; 2010 Mar; 81(3):035109. PubMed ID: 20370215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superresolution imaging in optical tweezers using high-speed cameras.
    Staforelli JP; Vera E; Brito JM; Solano P; Torres S; Saavedra C
    Opt Express; 2010 Feb; 18(4):3322-31. PubMed ID: 20389339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional imaging of macular holes with high-speed optical coherence tomography.
    Hangai M; Ojima Y; Gotoh N; Inoue R; Yasuno Y; Makita S; Yamanari M; Yatagai T; Kita M; Yoshimura N
    Ophthalmology; 2007 Apr; 114(4):763-73. PubMed ID: 17187861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography.
    Grieve K; Paques M; Dubois A; Sahel J; Boccara C; Le Gargasson JF
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4126-31. PubMed ID: 15505065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pulse-compression-ring circuit for high-efficiency electric propulsion.
    Owens TL
    Rev Sci Instrum; 2008 Mar; 79(3):034701. PubMed ID: 18377034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging photomultiplier array with integrated amplifiers and high-speed USB interface.
    Blacksell M; Wach J; Anderson D; Howard J; Collis SM; Blackwell BD; Andruczyk D; James BW
    Rev Sci Instrum; 2008 Oct; 79(10):10F506. PubMed ID: 19044651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a motion-capture system to record dynamic articulation for application in CAD/CAM software.
    Röhrle O; Waddell JN; Foster KD; Saini H; Pullan AJ
    J Prosthodont; 2009 Dec; 18(8):703-10. PubMed ID: 19754645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.