These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 20515474)

  • 1. Transcriptomic analysis of dystrophin RNAi knockdown reveals a central role for dystrophin in muscle differentiation and contractile apparatus organization.
    Ghahramani Seno MM; Trollet C; Athanasopoulos T; Graham IR; Hu P; Dickson G
    BMC Genomics; 2010 Jun; 11():345. PubMed ID: 20515474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-Based Dystrophin Restoration Reveals a Novel Role for Dystrophin in Bioenergetics and Stress Resistance of Muscle Progenitors.
    Matre PR; Mu X; Wu J; Danila D; Hall MA; Kolonin MG; Darabi R; Huard J
    Stem Cells; 2019 Dec; 37(12):1615-1628. PubMed ID: 31574188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.
    Church JE; Trieu J; Chee A; Naim T; Gehrig SM; Lamon S; Angelini C; Russell AP; Lynch GS
    Exp Physiol; 2014 Apr; 99(4):675-87. PubMed ID: 24443351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A web-accessible complete transcriptome of normal human and DMD muscle.
    Bakay M; Zhao P; Chen J; Hoffman EP
    Neuromuscul Disord; 2002 Oct; 12 Suppl 1():S125-41. PubMed ID: 12206807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation.
    Alexander MS; Kawahara G; Motohashi N; Casar JC; Eisenberg I; Myers JA; Gasperini MJ; Estrella EA; Kho AT; Mitsuhashi S; Shapiro F; Kang PB; Kunkel LM
    Cell Death Differ; 2013 Sep; 20(9):1194-208. PubMed ID: 23764775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle.
    Ebrahimi M; Lad H; Fusto A; Tiper Y; Datye A; Nguyen CT; Jacques E; Moyle LA; Nguyen T; Musgrave B; Chávez-Madero C; Bigot A; Chen C; Turner S; Stewart BA; Pegoraro E; Vitiello L; Gilbert PM
    Acta Biomater; 2021 Sep; 132():227-244. PubMed ID: 34048976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNAi-mediated knockdown of dystrophin expression in adult mice does not lead to overt muscular dystrophy pathology.
    Ghahramani Seno MM; Graham IR; Athanasopoulos T; Trollet C; Pohlschmidt M; Crompton MR; Dickson G
    Hum Mol Genet; 2008 Sep; 17(17):2622-32. PubMed ID: 18511456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45-55 Skipping Accompanied by Rescue of Dystrophin Expression.
    Lee JJA; Saito T; Duddy W; Takeda S; Yokota T
    Methods Mol Biol; 2018; 1828():141-150. PubMed ID: 30171539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs.
    Uchimura T; Asano T; Nakata T; Hotta A; Sakurai H
    Cell Rep Med; 2021 Jun; 2(6):100298. PubMed ID: 34195678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of gene expression differences between utrophin/dystrophin-deficient vs mdx skeletal muscles reveals a specific upregulation of slow muscle genes in limb muscles.
    Baker PE; Kearney JA; Gong B; Merriam AP; Kuhn DE; Porter JD; Rafael-Fortney JA
    Neurogenetics; 2006 May; 7(2):81-91. PubMed ID: 16525850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repression of phosphatidylinositol transfer protein α ameliorates the pathology of Duchenne muscular dystrophy.
    Vieira NM; Spinazzola JM; Alexander MS; Moreira YB; Kawahara G; Gibbs DE; Mead LC; Verjovski-Almeida S; Zatz M; Kunkel LM
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):6080-6085. PubMed ID: 28533404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal calcium homeostasis in Duchenne muscular dystrophy myotubes contracting in vitro.
    Imbert N; Cognard C; Duport G; Guillou C; Raymond G
    Cell Calcium; 1995 Sep; 18(3):177-86. PubMed ID: 8529258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal Proteomic Profiling During Differentiation of Normal and Dystrophin-Deficient Human Muscle Cells.
    Goswami MV; Tawalbeh SM; Canessa EH; Hathout Y
    J Neuromuscul Dis; 2021; 8(s2):S205-S222. PubMed ID: 34602497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR-146a deficiency does not aggravate muscular dystrophy in mdx mice.
    Bronisz-Budzyńska I; Chwalenia K; Mucha O; Podkalicka P; Karolina-Bukowska-Strakova ; Józkowicz A; Łoboda A; Kozakowska M; Dulak J
    Skelet Muscle; 2019 Aug; 9(1):22. PubMed ID: 31412923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of store-operated calcium entries and mitochondrial uptake by minidystrophin expression in cultured myotubes.
    Vandebrouck A; Ducret T; Basset O; Sebille S; Raymond G; Ruegg U; Gailly P; Cognard C; Constantin B
    FASEB J; 2006 Jan; 20(1):136-8. PubMed ID: 16254044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normal calcium homeostasis in dystrophin-expressing facioscapulohumeral muscular dystrophy myotubes.
    Vandebrouck C; Imbert N; Constantin B; Duport G; Raymond G; Cognard C
    Neuromuscul Disord; 2002 Mar; 12(3):266-72. PubMed ID: 11801398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.
    Miyazaki D; Nakamura A; Fukushima K; Yoshida K; Takeda S; Ikeda S
    Hum Mol Genet; 2011 May; 20(9):1787-99. PubMed ID: 21320869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xanthine oxidase is hyper-active in Duchenne muscular dystrophy.
    Lindsay A; McCourt PM; Karachunski P; Lowe DA; Ervasti JM
    Free Radic Biol Med; 2018 Dec; 129():364-371. PubMed ID: 30312761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of calcium handling and changes in calcium-release properties after mini- or full-length dystrophin forced expression in cultured skeletal myotubes.
    Marchand E; Constantin B; Balghi H; Claudepierre MC; Cantereau A; Magaud C; Mouzou A; Raymond G; Braun S; Cognard C
    Exp Cell Res; 2004 Jul; 297(2):363-79. PubMed ID: 15212940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipofection of a cDNA plasmid containing the dystrophin gene lowers intracellular free calcium and calcium leak channel activity in mdx myotubes.
    McCarter GC; Denetclaw WF; Reddy P; Steinhardt RA
    Gene Ther; 1997 May; 4(5):483-7. PubMed ID: 9274726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.