These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20515697)

  • 41. Observer-based techniques for the identification and analysis of avascular tumor growth.
    Cacace F; Cusimano V; Di Paola L; Germani A
    Math Biosci; 2011 Dec; 234(2):147-53. PubMed ID: 22023728
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The paradigm of personalized therapy in oncology.
    Gasparini G; Longo R
    Expert Opin Ther Targets; 2012 Mar; 16 Suppl 1():S7-16. PubMed ID: 22073968
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hybrid multiscale modeling and prediction of cancer cell behavior.
    Zangooei MH; Habibi J
    PLoS One; 2017; 12(8):e0183810. PubMed ID: 28846712
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiscale modeling and simulation of soft adhesion and contact of stem cells.
    Zeng X; Li S
    J Mech Behav Biomed Mater; 2011 Feb; 4(2):180-9. PubMed ID: 21262496
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Clinical trials simulation: a statistical approach.
    Westfall PH; Tsai K; Ogenstad S; Tomoiaga A; Moseley S; Lu Y
    J Biopharm Stat; 2008; 18(4):611-30. PubMed ID: 18607794
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimal policies of non-cross-resistant chemotherapy on Goldie and Coldman's cancer model.
    Chen JH; Kuo YH; Luh HP
    Math Biosci; 2013 Oct; 245(2):282-98. PubMed ID: 23927854
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selection of personalized patient therapy through the use of knowledge-based computational models that identify tumor-driving signal transduction pathways.
    Verhaegh W; van Ooijen H; Inda MA; Hatzis P; Versteeg R; Smid M; Martens J; Foekens J; van de Wiel P; Clevers H; van de Stolpe A
    Cancer Res; 2014 Jun; 74(11):2936-45. PubMed ID: 24695361
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimal control oriented to therapy for a free-boundary tumor growth model.
    Calzada MC; Fernández-Cara E; Marín M
    J Theor Biol; 2013 May; 325():1-11. PubMed ID: 23485361
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inferring the effect of therapy on tumors showing stochastic Gompertzian growth.
    Albano G; Giorno V; Román-Román P; Torres-Ruiz F
    J Theor Biol; 2011 May; 276(1):67-77. PubMed ID: 21295592
    [TBL] [Abstract][Full Text] [Related]  

  • 50. What does not kill a tumour may make it stronger: In silico insights into chemotherapeutic drug resistance.
    Hamis S; Nithiarasu P; Powathil GG
    J Theor Biol; 2018 Oct; 454():253-267. PubMed ID: 29909142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of tumor size response metrics to predict survival in oncology clinical trials.
    Bruno R; Mercier F; Claret L
    Clin Pharmacol Ther; 2014 Apr; 95(4):386-93. PubMed ID: 24419563
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling tumor growth and irradiation response in vitro--a combination of high-performance computing and web-based technologies including VRML visualization.
    Stamatakos GS; Zacharaki EI; Makropoulou MI; Mouravliansky NA; Marsh A; Nikita KS; Uzunoglu NK
    IEEE Trans Inf Technol Biomed; 2001 Dec; 5(4):279-89. PubMed ID: 11759834
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A patient-specific in vivo tumor and normal tissue model for prediction of the response to radiotherapy.
    Stamatakos G; Antipas VP; Ozunoglu NK
    Methods Inf Med; 2007; 46(3):367-75. PubMed ID: 17492124
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A multiscale agent-based framework integrated with a constraint-based metabolic network model of cancer for simulating avascular tumor growth.
    Ghadiri M; Heidari M; Marashi SA; Mousavi SH
    Mol Biosyst; 2017 Aug; 13(9):1888-1897. PubMed ID: 28737788
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Studying the capability of different cancer hallmarks to initiate tumor growth using a cellular automaton simulation. Application in a cancer stem cell context.
    Monteagudo Á; Santos J
    Biosystems; 2014 Jan; 115():46-58. PubMed ID: 24262634
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [A simplified model of growth of solid tumors].
    Gum RE; Zharinov GM; Narbaev VA; Iakudov E
    Vopr Onkol; 2011; 57(1):63-6. PubMed ID: 21598710
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A modeling and simulation framework to support early clinical drug development decisions in oncology.
    Bruno R; Lu JF; Sun YN; Claret L
    J Clin Pharmacol; 2011 Jan; 51(1):6-8. PubMed ID: 20628172
    [No Abstract]   [Full Text] [Related]  

  • 58. Data-driven computer simulation of human cancer cell.
    Christopher R; Dhiman A; Fox J; Gendelman R; Haberitcher T; Kagle D; Spizz G; Khalil IG; Hill C
    Ann N Y Acad Sci; 2004 May; 1020():132-53. PubMed ID: 15208190
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The "Oncosimulator": a multilevel, clinically oriented simulation system of tumor growth and organism response to therapeutic schemes. Towards the clinical evaluation of in silico oncology.
    Stamatakos GS; Dionysiou DD; Graf NM; Sofra NA; Desmedt C; Hoppe A; Uzunoglu NK; Tsiknakis M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6629-32. PubMed ID: 18003545
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Toward Personalized Computer Simulation of Breast Cancer Treatment: A Multiscale Pharmacokinetic and Pharmacodynamic Model Informed by Multitype Patient Data.
    Lai X; Geier OM; Fleischer T; Garred Ø; Borgen E; Funke SW; Kumar S; Rognes ME; Seierstad T; Børresen-Dale AL; Kristensen VN; Engebraaten O; Köhn-Luque A; Frigessi A
    Cancer Res; 2019 Aug; 79(16):4293-4304. PubMed ID: 31118201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.